
AICC - CMI Guidelines for Interoperability

August-16-2004 1 CMI001 Version 4.0

DOCUMENT NO. CMI001

CMI Guidelines for Interoperability

AICC

ORIGINAL RELEASE DATE 25-Oct-93

Revision 4.0 release 16-Aug-2004

THIS DOCUMENT IS CONTROLLED BY:

AICC CMI Subcommittee

ALL REVISIONS TO THE DOCUMENT SHALL BE APPROVED
BY THE ABOVE ORGANIZATION PRIOR TO RELEASE.

POINT OF CONTACT:

Scott Bergstrom
AICC Administrator

P.O. Box 472
Sugar City, ID 83448-0472

Telephone: (208) 496-1136
E-mail address: admin@aicc.org

PREPARED ON PC FILED UNDER CMI001v4.doc
Caveats...

 1992 - 2004 AICC
All rights reserved

The information contained in this document has been assembled by the AICC as an informational resource.
Neither the AICC nor any of its members assumes nor shall any of them have any responsibility for any use
by anyone for any purpose of this document or of the data which it contains.

AICC - CMI Guidelines for Interoperability

August-16-2004 2 CMI001 Version 4.0

Contributing Editors

William A. McDonald – Alteon (A Boeing Company), AICC CMI Subcommittee Chair
Jack Hyde - AICC Technical Advisor

Ann Montgomery - AICC Technical Coordinator

Partial List of Contributors

Mark Schupp – Integrity eLearning Bernard Bouyt – Airbus Industrie
Jacques Talvard – Airbus Industrie Paul Bishop – Plan Three Solutions
Brett Watters – Geometrix Ed Cohen – Plateau Systems
Bradley K. Weage – Learn.Net Jon Conradt – Gallup
Greg Tobin – Heathkit Educational Systems Jonathan Zemple - IBM
Nathan Summers – FutureMedia Paul Roberts – Question Mark, Ltd.
Tom King - Macromedia John Kleeman – Question Mark, Ltd.

AICC - CMI Guidelines for Interoperability

August-16-2004 3 CMI001 Version 4.0

Revision History

REV 4.0 (June 2004) Complete rewrite and reorganization of all sections. See CMI001 version 3.5 for a

complete revision history back to version 1.0. This revision is intended to be
functionally equivalent to CMI001 version 3.5

.Major changes include:

• All definitions were narrowed and clarified.
• Conflicting rules and statements clarified/resolved.
• Structured notation was added for every data element to define data types, range

of data, and data vocabularies.
• Communication and course structure data models separated from individual

bindings (methods of implementation). All bindings were mapped to the data
models in separate sections.

• The content of all appendices (Appendix A, and Appendix B) were merged into
the main body of the document.

AICC - CMI Guidelines for Interoperability

August-16-2004 4 CMI001 Version 4.0

Table of Contents
1.0 OVERVIEW ..9

1.1 PURPOSE... 9
1.2 SCOPE... 9
1.3 DOCUMENT ORGANIZATION.. 10
1.4 CONFORMANCE REQUIREMENTS.. 11

1.4.1 File-based Environments...11
1.4.2 Web-based Environments ..11

2.0 COMMUNICATION DATA MODEL ...12
2.1 CORE ... 16

2.1.1 Core.Student ID...16
2.1.2 Core.Student Name ...17
2.1.3 Core.Output File ...18
2.1.4 Core.Lesson Location...18
2.1.5 Core.Credit...19
2.1.6 Core.Lesson Status..21
2.1.7 Core.Exit...23
2.1.8 Core.Entry..24
2.1.9 Core.File Path...25
2.1.10 Core.Score..26
2.1.11 Core.Session Time...29
2.1.12 Core.Total Time...30
2.1.13 Core.Lesson Mode ..30

2.2 SUSPEND DATA... 31
2.3 LAUNCH DATA .. 33
2.4 COMMENTS FROM LEARNER... 35
2.5 ITEMIZED COMMENTS FROM LEARNER... 37

2.5.1 Itemized Comments From Learner.Content ...37
2.5.2 Itemized Comments From Learner.Date...39
2.5.3 Itemized Comments From Learner.Location..40
2.5.4 Itemized Comments From Learner.Time ...41

2.6 COMMENTS FROM LMS... 42
2.7 EVALUATION ... 44

2.7.1 Evaluation.Comments_File...44
2.7.2 Evaluation.Course_ID..45
2.7.3 Evaluation.Interactions_File...46
2.7.4 Evaluation.Objective_Status_File..46
2.7.5 Evaluation.Path_File..47
2.7.6 Evaluation.Performance_File...48

2.8 OBJECTIVES ... 50
2.8.1 Objectives.ID ...51
2.8.2 Objectives.Score..52
2.8.3 Objectives.Status...54
2.8.4 Objectives.Date ...56
2.8.5 Objectives.Time ...56
2.8.6 Objectives.Mastery Time ..57

2.9 STUDENT DATA... 59
2.9.1 Student Data.Attempt Number..59
2.9.2 Student Data.Tries ..60
2.9.3 Student Data.Mastery Score..63
2.9.4 Student Data.Max Time Allowed..64

AICC - CMI Guidelines for Interoperability

August-16-2004 5 CMI001 Version 4.0

2.9.5 Student Data.Time Limit Action ...65
2.9.6 Student Data.Tries During Lesson...66
2.9.7 Student Data.Sessions Journal..67
2.9.7.1 Student Data.Sessions Journal.Lesson Score...67
2.9.7.2 Student Data.Sessions Journal.Lesson Status..68

2.10 STUDENT PREFERENCE... 70
2.10.1 Student Preference.Audio..70
2.10.2 Student Preference.Language...71
2.10.3 Student Preference.Lesson Type...72
2.10.4 Student Preference.Speed..74
2.10.5 Student Preference.Text ...75
2.10.6 Student Preference.Text Color..76
2.10.7 Student Preference.Text Location..77
2.10.8 Student Preference.Text Size...78
2.10.9 Student Preference.Video...78
2.10.10 Student Preference.Windows ..79

2.11 INTERACTIONS... 81
2.11.1 Interactions.ID...81
2.11.2 Interactions.Objectives...82
2.11.3 Interactions.Date...83
2.11.4 Interactions.Time...84
2.11.5 Interactions.Type...86
2.11.6 Interactions.Correct Responses..87
2.11.7 Interactions.Weighting...89
2.11.8 Interactions.Student Response..89
2.11.9 Interactions.Result ..90
2.11.10 Interactions.Latency...91

2.12 PATHS ... 92
2.12.1 Paths.Location ID ...92
2.12.2 Paths.Date..93
2.12.3 Paths.Time ..94
2.12.4 Paths.Status..95
2.12.5 Paths.Why Left ...96
2.12.6 Paths.Time in Element..97

2.13 STUDENT DEMOGRAPHICS... 98
2.13.1 Student Demographics.City...98
2.13.2 Student Demographics.Class..99
2.13.3 Student Demographics.Company.. 100
2.13.4 Student Demographics.Country... 100
2.13.5 Student Demographics.Experience... 101
2.13.6 Student Demographics.Familiar Name .. 102
2.13.7 Student Demographics.Instructor Name .. 103
2.13.8 Student Demographics.Native Language... 103
2.13.9 Student Demographics.State.. 104
2.13.10 Student Demographics.Street Address... 105
2.13.11 Student Demographics.Telephone.. 106
2.13.12 Student Demographics.Title... 106
2.13.13 Student Demographics.Years Experience.. 107

2.14 LESSON_ID ..109
3.0 COURSE STRUCTURE DATA MODEL .. 110

3.1 COURSE ...113
3.1.1 Course.Creator... 113
3.1.2 Course.ID .. 113
3.1.3 Course.System... 114
3.1.4 Course.Title... 114

AICC - CMI Guidelines for Interoperability

August-16-2004 6 CMI001 Version 4.0

3.1.5 Course.Level ... 115
3.1.6 Course.Max Fields CST.. 115
3.1.7 Course.Max Fields ORT ... 116
3.1.8 Course.Total AUs... 116
3.1.9 Course.Total Blocks... 116
3.1.10 Course.Total Objectives.. 117
3.1.11 Course.Total Complex Objectives... 117
3.1.12 Course.Version... 118

3.2 COURSE BEHAVIOR ...118
3.2.1 Course Behavior.Max Normal... 118

3.3 COURSE DESCRIPTION..119
3.4 COURSE ELEMENTS..119

3.4.1 Course Elements.System ID ... 120
3.4.2 Course Elements.Developer ID ... 121
3.4.3 Course Elements.Title ... 121
3.4.4 Course Elements.Description... 122
3.4.5 Course Elements.Type... 122
3.4.6 Course Elements.Command Line .. 123
3.4.7 Course Elements.File Name ... 123
3.4.8 Course Elements.Mastery Score.. 124
3.4.9 Course Elements.Max Score .. 124
3.4.10 Course Elements.Max Time Allowed.. 125
3.4.11 Course Elements.Time Limit Action.. 125
3.4.12 Course Elements.Development System... 126
3.4.13 Assignable Unit.Launch Data.. 126
3.4.14 Course Elements.Web Launch Parameters ... 126
3.4.15 Course Elements.AU Password ... 127
3.4.16 Course Elements.Members ... 127
3.4.17 Course Elements.Prerequisite.. 128
3.4.18 Course Elements.Completions... 129
3.4.18.1 Course Elements.Completions.Requirement... 130
3.4.18.2 Course Elements.Completions.Status if True.. 130
3.4.18.3 Course Elements.Completions.Next AU if True ... 131
3.4.18.4 Course Elements.Completions.Goto after Next.. 132

3.5 LEVELS OF COMPLEXITY ...133
3.5.1 Course Level Mapping.. 134

4.0 ASSIGNABLE UNIT SEQUENCING WITHIN A COURSE.. 135
4.1 STRUCTURE..135
4.2 SEQUENCING..139

4.2.1 Course Element Status.. 139
4.2.2 Data Model Sequencing Elements... 140
4.2.3 Logical Expressions... 140

4.3 COMPLETION REQUIREMENTS...143
4.3.1 Complex Completion Requirements.. 144
4.3.2 Completion Requirements - Rules of Execution.. 145

4.4 PREREQUISITES..147
4.4.1 Simple Prerequisites.. 147
4.4.2 Complex Prerequisites.. 149
4.4.3 Complex Sequencing.. 150

4.5 TRACKING NON-CONFORMING/NON-COMMUNICATING ASSIGNABLE UNITS IN A COURSE152
4.5.1 Web Environment Conformance Requirements.. 152
4.5.2 File-based Conformance Requirements... 152

5.0 COMMUNICATING VIA FILES (THE FILE BINDING)... 153
5.1 CONCEPTUAL MODEL...153

AICC - CMI Guidelines for Interoperability

August-16-2004 7 CMI001 Version 4.0

5.2 OPERATING ENVIRONMENT...154
5.3 LAUNCHING AN ASSIGNABLE UNIT..154
5.4 METHOD OF COMMUNICATION...155

5.4.1 Startup File (Usage) .. 155
5.4.2 Finish File (Usage).. 156
5.4.3 Evaluation Files (Usage).. 156
5.4.4 Error Conditions.. 156

5.5 CONFORMANCE REQUIREMENTS..157
5.5.1 CMI Responsibilities.. 157
5.5.2 Assignable Unit (AU) Responsibilities ... 158

5.6 COMMUNICATION DATA MODEL MAPPING..159
5.6.1 Startup File.. 159
5.6.2 Finish File ... 161
5.6.3 Comments File.. 162
5.6.4 Interactions File... 163
5.6.5 Objectives Status File.. 164
5.6.6 Path File .. 164
5.6.7 Performance File.. 165

6.0 COMMUNICATING VIA HTTP (THE HACP BINDING) ... 166
6.1 CONCEPTUAL MODEL...166
6.2 OPERATING ENVIRONMENT...167
6.3 LAUNCHING AN ASSIGNABLE UNIT..167

6.3.1 The “Launch URL” ... 167
6.4 METHOD OF COMMUNICATION...169

6.4.1 HACP Transport Mechanism... 169
6.4.2 HACP Request Message Format ... 171
6.4.3 HACP Response Message Format .. 171
6.4.4 GetParam Request ... 173
6.4.5 PutParam Request.. 173
6.4.6 Optional Messages... 173
6.4.7 ExitAU Message ... 174
6.4.8 Error Conditions.. 174

6.5 CONFORMANCE REQUIREMENTS..175
6.5.1 CMI Responsibilities.. 175
6.5.2 Assignable Unit (AU) Responsibilities... 176

6.6 COMMUNICATION DATA MODEL MAPPING..177
6.6.1 GetParam (Messages) ... 177
6.6.2 PutParam (Messages) ... 179
6.6.3 PutComments (Messages)... 181
6.6.4 PutInteractions (Messages).. 182
6.6.5 PutObjectives (Messages)... 183
6.6.6 PutPath (Messages) ... 184
6.6.7 PutPerformance (Messages) .. 185
6.6.8 ExitAU (Messages)... 186

7.0 COMMUNICATING VIA API (THE API BINDING) .. 187
7.1 CONCEPTUAL MODEL...187
7.2 OPERATING ENVIRONMENT...187
7.3 LAUNCHING AN ASSIGNABLE UNIT..188
7.4 METHOD OF COMMUNICATION...189

7.4.1 Parameters .. 189
7.4.2 API General Rules ... 190
7.4.3 Arrays – Handling Lists .. 190
7.4.4 Session Methods... 190
7.4.5 Data-Transfer Methods... 192

AICC - CMI Guidelines for Interoperability

August-16-2004 8 CMI001 Version 4.0

7.4.6 Error Handling Methods... 194
7.5 CONFORMANCE REQUIREMENTS..196

7.5.1 CMI Responsibilities.. 196
7.5.2 AU Responsibilities.. 198

7.6 COMMUNICATION DATA MODEL MAPPING..200
8.0 COURSE STRUCTURE DEFINITION (FILE BINDING) .. 203

8.1 CONCEPTUAL MODEL...203
8.2 COURSE INTERCHANGE..204

8.2.1 Course Structure Export... 204
8.2.2 Course Structure Import... 205

8.3 CONFORMANCE REQUIREMENTS..205
8.4 COURSE STRUCTURE DATA MODEL MAPPING...206

8.4.1 Course Description (.CRS) File... 206
8.4.2 Descriptor (.DES) File.. 207
8.4.3 Assignable Unit (.AU) File ... 208
8.4.4 Course Structure (.CST) File... 209
8.4.5 Objectives Relationships (.ORT) File... 209
8.4.6 Prerequisites (.PRE) File.. 210
8.4.7 Completion Requirements (.CMP) File.. 210

9.0 DATA TYPES .. 212

10.0 AUGMENTED BACKUS-NAUR FORM (BNF) NOTATION .. 231
10.1 AUGMENTED BACKUS-NAUR FORM (BNF) CONSTRUCTS...231
10.2 BASIC BNF RULES ...232
10.3 AICC STYLE INI RELATED BNF RULES ..234
10.4 HACP RELATED BNF RULES...235
10.5 CSV RELATED BNF RULES..236
10.6 “AICC SCRIPT” BNF RULES...236
10.7 INTERACTIONS RELATED BNF RULES ...237

11.0 GLOSSARY.. 239

12.0 REFERENCES .. 240

AICC - CMI Guidelines for Interoperability

August-16-2004 9 CMI001 Version 4.0

1.0 Overview

1.1 Purpose

The purpose of this document is to define interfaces and rules that allow CBT (Computer-Based Training) content
from a variety of sources to interoperate with CMI (Computer Managed Instruction) systems.

1.2 Scope
This document defines the following:

• The mechanism used by the CMI to launch CBT content
• Common mechanisms and data for CMI/CBT communication
• A common definition for organization and sequencing of CBT content in a course.

Following items are outside the scope of this document:

• User interface appearance
• Pedagogy

AICC - CMI Guidelines for Interoperability

August-16-2004 10 CMI001 Version 4.0

1.3 Document Organization

Document Section Description
1.0 Overview General Description and Overview

2.0 Communication Data Model Describes all data used for communication between

CBT assignable units and the CMI system. Each data
element is cross-referenced to all relevant bindings.

3.0 Course Structure Data Model A description of all data used to define a course
structure. Each data element is cross-referenced to all
relevant bindings

4.0 Assignable Unit Sequencing within a Course A detailed explanation of how sequencing rules in a
course are used.

5.0 Communicating via Files (The File Binding) Defines the requirements for implementing the
communication data model using files.

6.0 Communicating via HTTP (The HACP Binding) Defines the requirements for implementing the
communication data model using HTTP messages.

7.0 Communicating via API (The API Binding) Defines the requirements for implementing the
communication data model using a JavaScript API.

8.0 Course Structure Definition (File Binding) Defines the requirements for implementing the course
structure data model using files.

9.0 Data Types Definition and format of data types used by the
various data models and their bindings.

10.0 Augmented Backus-Naur Form (BNF) Notation The structured notation used to describe the
formatting of data types in this document

11.0 Glossary Definition of terms used in this document.

12.0 References List of external documents referenced.

AICC - CMI Guidelines for Interoperability

August-16-2004 11 CMI001 Version 4.0

1.4 Conformance Requirements

This specification defines interoperability for the following environments:

• File-based (Local file system and program execution.)
• Web-based (Using a web browser)

The conformance requirements for each environment are described in the following sections.

1.4.1 File-based Environments

A conforming CMI system in the file-based environment must meet all conformance requirements described in the
following sections:

5.0 Communicating via Files (The File Binding)
8.0 Course Structure Definition (File Binding)

A conforming Assignable Unit (AU) in the file-based environment must meet all conformance requirements
described in the following section:

5.0 Communicating via Files (The File Binding)

1.4.2 Web-based Environments

A conforming CMI system in the web-based environment must meet all of the conformance requirements described
in the following sections:

6.0 Communicating via HTTP (The HACP Binding)
7.0 Communicating via API (The API Binding)
8.0 Course Structure Definition (File Binding)

A conforming Assignable Unit (AU) in the web-based environment must meet all of the conformance requirements
described in either of the following sections:

6.0 Communicating via HTTP (The HACP Binding)
7.0 Communicating via API (The API Binding)

AICC - CMI Guidelines for Interoperability

August-16-2004 12 CMI001 Version 4.0

2.0 Communication Data Model

This section covers all that data that may be communicated between the CMI and the AU.
Each data element is this model may appear in one or more of the following bindings:

File-Based A text -file binding for use in LAN/CD-ROM based systems. (See section 5.0.)

HACP An HTTP-based binding which may be used for Web implementations. (See section 6.0)

API A JavaScript API binding which may also be used for Web implementations. (See section

7.0)

In general, a data element is used in the same manner across all bindings, but there are some important distinctions
to be made for each binding:

1. Each binding has different rules for formatting data
2. Each binding also operates in a different environment with different transport mechanisms.
3. Some data elements may be specific only to a particular binding.

The data elements in this model are arranged hierarchically (in a “parent/child” relationship). Hierarchy levels are
delimited by period (“.”)s in the data element name. Any item to the right of the period delimiter is the “child” of
preceding item (e.g. in “Core.Score” , “Core.Score” is a child of “Core” and “Core” is the parent of “Core.Score”)

The table below list all elements in this data model. Each element is described in the section indicated.

Table Legend:
Name Indicates the name of the data element.
Section Indicates where in this document a definition of the data element is found.
CMI Obligation This indicates whether the data element is required or optional for a CMI

system.

Data Element Section
CMI

Obligation
Core 2.1 Mandatory
Core.Student Id 2.1.1 Mandatory
Core.Student Name 2.1.2 Mandatory
Core.Output File 2.1.3 Mandatory
Core.Lesson Location 2.1.4 Mandatory
Core.Credit 2.1.5 Mandatory
Core.Lesson Status 2.1.6 Mandatory
Core.Exit 2.1.7 Mandatory
Core.Entry 2.1.8 Mandatory
Core.File Path 2.1.9 Mandatory
Core.Score 2.1.10 Mandatory
Core.Session Time 2.1.11 Mandatory
Core.Total Time 2.1.12 Mandatory
Core.Lesson Mode 2.1.13 Optional
Suspend Data 2.2 Mandatory
Launch Data 2.3 Mandatory
Comments From Learner 2.4 Optional
Itemized Comments From Learner 2.5 Optional
Itemized Comments From Learner.Content 2.5.1 Optional
Itemized Comments From Learner.Date 2.5.2 Optional
Itemized Comments From Learner.Location 2.5.4 Optional
Itemized Comments From Learner.Time 2.5.5 Optional
Comments From LMS 2.6 Optional
Evaluation 2.7 Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 13 CMI001 Version 4.0

Data Element Section
CMI

Obligation
Evaluation.Comments_File 2.7.1 Optional
Evaluation.Course_Id 2.7.2 Optional
Evaluation.Interactions_File 2.7.3 Optional
Evaluation.Objective_Status_File 2.7.4 Optional
Evaluation.Path_File 2.7.5 Optional
Evaluation.Performance_File 2.7.6 Optional
Objectives 2.8 Optional
Objectives.ID 2.8.1 Optional
Objectives.Score 2.8.2 Optional
Objectives.Status 2.8.3 Optional
Objectives.Date 2.8.4 Optional
Objectives.Time 2.8.5 Optional
Objectives.Mastery Time 2.8.6 Optional
Student Data 2.9 Optional
Student Data.Attempt Number 2.9.1 Optional
Student Data.Tries 2.9.2 Optional
Student Data.Tries.Score 2.9.2.1 Optional
Student Data.Tries.Status 2.9.2.2 Optional
Student Data.Tries.Time 2.9.2.3 Optional
Student Data.Mastery Score 2.9.3 Optional
Student Data.Max Time Allowed 2.9.4 Optional
Student Data.Time Limit Action 2.9.5 Optional
Student Data.Tries During Lesson 2.9.6 Optional
Student Data.Sessions Journal 2.9.7 Optional
Student Data.Sessions Journal.Lesson Score 2.9.7.1 Optional
Student Data.Sessions Journal.Lesson Status 2.9.7.2 Optional
Student Preference 2.10 Optional
Student Preference.Audio 2.10.1 Optional
Student Preference.Language 2.10.2 Optional
Student Preference.Lesson Type 2.10.3 Optional
Student Preference.Speed 2.10.4 Optional
Student Preference.Text 2.10.5 Optional
Student Preference.Text Color 2.10.6 Optional
Student Preference.Text Location 2.10.7 Optional
Student Preference.Text Size 2.10.8 Optional
Student Preference.Video 2.10.9 Optional
Student Preference.Windows 2.10.10 Optional
Interactions 2.11 Optional
Interactions.ID 2.11.1 Optional
Interactions.Objectives 2.11.2 Optional
Interactions.Date 2.11.3 Optional
Interactions.Time 2.11.4 Optional
Interactions.Type 2.11.5 Optional
Interactions.Correct Responses 2.11.6 Optional
Interactions.Weighting 2.11.7 Optional
Interactions.Student Response 2.11.8 Optional
Interactions.Result 2.11.9 Optional
Interactions.Latency 2.11.10 Optional
Paths 2.12 Optional
Paths.Location Id 2.12.1 Optional
Paths.Date 2.12.2 Optional
Paths.Time 2.12.3 Optional
Paths.Status 2.12.4 Optional
Paths.Why Left 2.12.5 Optional
Paths.Time In Element 2.12.6 Optional
Student Demographics 2.13 Optional
Student Demographics.City 2.13.1 Optional
Student Demographics.Class 2.13.2 Optional
Student Demographics.Company 2.13.3 Optional
Student Demographics.Country 2.13.4 Optional
Student Demographics.Experience 2.13.5 Optional
Student Demographics.Familiar Name 2.13.6 Optional
Student Demographics.Instructor Name 2.13.7 Optional
Student Demographics.Native Language 2.13.8 Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 14 CMI001 Version 4.0

Data Element Section
CMI

Obligation
Student Demographics.State 2.13.9 Optional
Student Demographics.Street Address 2.13.10 Optional
Student Demographics.Telephone 2.13.11 Optional
Student Demographics.Title 2.13.12 Optional
Student Demographics.Years Experience 2.13.13 Optional

Each element in this data model is described in tables in the following sections. The fields for each of these tables
are as follows:

Data Element Name
The data elements in this model are arranged hierarchically (in a “parent/child” relationship). Hierarchy levels are
delimited by period (“.”)s in the data element name. Any item to the right of the period delimiter is the “child” of
preceding item (e.g. in “Core.Score” , “Core.Score” is a child of “Core” and “Core” is the parent of “Core.Score”).

Definition
A description of the data element.

Usage
What the data element is used for, and rules for its usage.

CMI Behavior Notes
A description of the expected or recommended CMI behavior when using the data element. (This field augments
“Usage”)

AU Behavior Notes
A description of the expected or recommended AU behavior when using the data element. (This field augments
“Usage”)

File Binding: Name
Name used for the data element in the file binding.

File Binding: Files and Obligations
The requirement for CMI or AU to read/write the data element in the files.

File Binding: Name Format
Formatting for the Name of the data element written in the files.

File Binding: Value Format
This field adds additional explanation for valid values that a field may have (in addition to the definition that data
type provides).

File Binding: DataType
Each data element binding is assigned a “data type”. The data type defines the size of data element and the valid
ranges of values. See section 10. Data Types

File Binding: Examples
Examples of how data element is represented in files.

HACP Binding: Name
Name used for the data element in the HACP binding.

AICC - CMI Guidelines for Interoperability

August-16-2004 15 CMI001 Version 4.0

HACP Binding: HACP Message(s) and Obligations
The requirement for CMI or AU to read/write the data element in the HACP messages specified.

HACP Binding: Name Format
Formatting for the name of the data element included in the HACP messages.

HACP Binding: Value Format
This field adds additional explanation for valid values that a field may have (in addition to the definition that data
type provides).

HACP Binding: Data type
Each data element binding is assigned a “data type”. The data type defines the size of data element and the valid
ranges of values. See section 10. Data Types

HACP Binding: Examples
Examples of how the data element is represented in HACP messages.

API Binding: Name
Name used for the data element in the API binding.

API Binding: API’s and Obligations
The requirement for CMI or AU to read/write the data element using the API.

API Binding: Name Format
Formatting for the name of the data element when using the API

API Binding: Value Format
This field adds additional explanation for valid values that a field may have (in addition to the definition that data
type provides).

API Binding: Data type
Each data element binding is assigned a “data type”. The data type defines the size of data element and the valid
ranges of values. See section 10. Data Types

API Binding: Examples
Examples of how the data element is represented in API calls.

AICC - CMI Guidelines for Interoperability

August-16-2004 16 CMI001 Version 4.0

2.1 Core
Data Element Name Core
Definition A grouping for a variety of important data elements.
Usage Most data elements in this category are required to be furnished

by all CMI systems. Mandatory members of this group are what
all AU’s may depend upon at start up. Individual members of
group are not necessarily all mandatory. (See individual member
data elements for obligations)

Membership Core.Student ID
Core.Student Name
Core.Output File
Core.Lesson Location
Core.Credit
Core.Lesson Status
Core.Exit
Core.Entry
Core.File Path
Core.Score
Core.Session Time
Core.Total Time
Core.Lesson Mode

2.1.1 Core.Student ID

Data Element Name Core.Student ID
Definition Unique alpha-numeric code/identifier that refers to a single user of the CMI

system.
Usage Used to uniquely identify a student. The AU obtains this element on startup

in order to associate Core.Student ID with other optional data elements (in
the file and HACP bindings). The AU may also use Core.Student ID for
display purposes in all bindings.

CMI Behavior Notes This element may be associated with the CMI system’s login name for a
given student. (But is not required to be equivalent)

AU Behavior Notes
File Binding
 Name Student_ID
 Files & Obligations Startup: CMI Mandatory

Comments: If file exists, AU Mandatory
Interactions: If file exists, AU Mandatory
Objectives Status: If file exists, AU Mandatory
Path: If file exists, AU Mandatory

 Name Format “Student_ID” Case insensitive.
 Value Format See description of data type CMIIdentifierINI
 Data type CMIIdentifierINI
 Examples Student_ID=Ted_Roosevelt1
 Student_id = JQH-1959
 STUDENT_id =jack1991-3
HACP Binding
 Name Student_ID

AICC - CMI Guidelines for Interoperability

August-16-2004 17 CMI001 Version 4.0

Data Element Name Core.Student ID
HACP Message(s)
& Obligations

GetParam(response) : CMI Mandatory
PutComments: Optional
PutInteractions: Optional
PutObjectives Status: Optional
PutPath: Optional

 Name Format Same as File binding
 Value Format Same as File binding
 Data type Same as File binding
 Examples Same as File binding
API Binding
 Name cmi.core.student_id
 API & Obligations LMSGetValue(): CMI Mandatory

 Name Format “cmi.core.student_id” Case sensitive.
 Value Format Alphanumeric group of characters with no white space or unprintable

characters in it. Maximum of 255 characters.
 Data type CMIIdentifierINI
 Examples Stu_id = LMSGetValue(“cmi.core.student_id”)

2.1.2 Core.Student Name

Data Element Name Core.Student Name
Definition Normally, the official name used for the student on the course roster. A

complete name, not just a first name.
Usage Used to represent the student’s official name
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Student_Name
 Files & Obligations Startup : Mandatory

 Name Format “Student_Name” case insensitive
 Value Format See DataType CMIStudentName for detailed formatting rules.
 Data type CMIStudentName
 Examples STUDENT_NAME = Blough, Joseph
 studeNT_nAME = Brown ,
 student_name = Smith-Farley von Sant , Johann A
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam(response) : Mandatory

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.core.student_name
 API & Obligations LMSGetValue() : Mandatory

 Name Format “cmi.core.student_name” case sensitive

AICC - CMI Guidelines for Interoperability

August-16-2004 18 CMI001 Version 4.0

 Value Format Same as File Binding
 Data type Same as File Binding
 Examples var StudentName = LMSGetValue(“cmi.core.student_name”);

2.1.3 Core.Output File

Data Element Name Core.Output File
Definition A fully qualified file path for the Finish file, which the AU must construct if it

is to pass information back to the CMI system.
Usage AU writes output data (i.e. the Output_File) to location specified in this

element (used for the File binding only).
CMI Behavior CMI determines the location for Finish file
AU Behavior AU writes the Finish file at this location prior to session termination.
File Binding
 Name Output_File
 Files & Obligations Startup : CMI Mandatory

 Name Format “Output_file” case insensitive
 Value Format See description for the CMIFileNameFull data type
 Data type CMIFileNameFull
 Examples Output_file = C:\windows\outparam.cmi
 OUTPUT_FILE = BB:\ r
 OUTPUT_FILE = C:\ directory with spaces\file with spaces.txt
HACP Binding
 Name Not Applicable

HACP Message(s)
& Obligations

Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

2.1.4 Core.Lesson Location

Data Element Name Core.Lesson Location
Definition This corresponds to the AU exit point passed to the CMI system the last

time the student experienced the AU. This element provides a mechanism
to let the student return to an AU at the same place he/she left it earlier.
This element can identify the student's exit point and that exit point can be
used by the AU as an entry point the next time the student runs the AU.

Usage The element could be used by the AU to store resume information for a
session. If the AU is exited, and then is re-entered later, this element
could be used by the AU to send the student back into the AU where they
left off.

AICC - CMI Guidelines for Interoperability

August-16-2004 19 CMI001 Version 4.0

Data Element Name Core.Lesson Location

This element is only set by the AU. The CMI must always return the value
provided from the previous AU session. The first time a student enters the
AU, the value of Core.Lesson Location is an empty string ("").

CMI Behavior Notes The CMI must set aside a space for this element for each AU in the
course(s) for each student. It stores this data and returns it to the AU
when it is run again. The CMI shall retain this data as long as the student
is enrolled in (or has access to) the course

CMI must always return the value previously stored by the AU in this
element (in the last AU session).

The CMI is not required to report on this data element.

AU Behavior Notes The AU is not required to read/use this element
File Binding
 Name Lesson_Location
 Files & Obligations Startup: CMI Mandatory

Finish: CMI Mandatory

 Name Format “Lesson_Location” case insensitive
 Value Format Implementation dependent. Carriage returns, and line feeds are not

allowed. See datatype CMIString255INI .
 Data type CMIString255INI
 Examples Lesson_Location = 1,,,,,2
 Lesson_Location = Page 1
 Lesson_Location = #$#&^%&^*$Q#)*%afgfg
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam(Response) : CMI Mandatory
PutParam : CMI Mandatory

 Name Format Same as File Binding
 Value Format Implementation dependent. Carriage returns, and line feeds are not

allowed. See datatype CMIString255INI
 Data type CMIString255INI
 Examples Same as File Binding
API Binding
 Name cmi.core.lesson_location
 API & Obligations LMSGetValue() : CMI Mandatory

LMSSetValue() : CMI Mandatory

 Name Format “cmi.core.lesson_location” case sensitive
 Value Format Implementation dependent. Carriage returns, and line feeds are not

allowed. See datatype CMIString255INI
 Data type CMIString255INI
 Examples var AULocation = LMSGetValue(“cmi.core.lesson_location”);

2.1.5 Core.Credit

Data Element Name Core.Credit

AICC - CMI Guidelines for Interoperability

August-16-2004 20 CMI001 Version 4.0

Data Element Name Core.Credit
Definition Indicates whether the student is being credited by the CMI system for his

performance (pass/fail and score) in this AU.
Usage Used by the CMI system to indicate to the AU whether the student is

being given credit for his or her score and status in the usage of the
content. There are two possible arguments for this keyword, Credit or
No-credit.

• Credit. The student is taking the AU “for credit”. The CMI system is
telling the AU that if the AU sends data to the CMI system, the CMI
system will credit it to the student. (i.e. record status and score related
changes normally)

• No-credit. The student is not taking the AU “for credit”. The current
credit will not be changed by the student’s performance in this AU
session. With this value the CMI system is communicating to the AU
that if the AU sends data to the CMI system, it will not change the
student’s accreditation. (i.e. will NOT record status and score related
changes). When a CMI sets the value of this data element to “No-
credit” at AU launch, certain elements are not updated with AU
session data. These elements are as follows:

Core.Score
Objectives.Score
Objectives.Status

All other data elements (with the exception of Core.Lesson Status) are
normally updated with AU’s session data when Core.Credit is set to
“No Credit”.

When Core.Credit is set to “No Credit, Core.Lesson Status can only
be changed from a value of “Not Attempted” to “Browsed”, otherwise
Core.Lesson Status is not updated (as a result of “No Credit” AU
session).

When Core.Lesson_Mode is set to “Browsed”, Core.Credit must be set to
“No Credit”. (See Core.Lesson_Mode.)

CMI Behavior CMI determines whether an AU is to be taken “for Credit”. Usually via a
student’s user interface selection.

AU Behavior If an unrecognized or unanticipated CREDIT value is received, then
Credit is assumed by the AU.

File Binding
 Name Credit
 Files & Obligations Startup: CMI Mandatory

 Name Format “credit” Case insensitive.
 Value Format One of two words: “credit” or “no-credit”. Case insensitive. Only the first

character is significant.
 Data type CMIVocabularyINI:Credit
 Examples Credit=c
 Credit = credit
 credit = N
HACP Binding
 Name Credit
 HACP Message(s)

& Obligations
GetParam (response): CMI Mandatory

AICC - CMI Guidelines for Interoperability

August-16-2004 21 CMI001 Version 4.0

Data Element Name Core.Credit
 Name Format Same as file binding.
 Value Format Same as file binding.
 Data type Same as file binding.
 Examples Same as file binding.
API Binding
 Name cmi.core.credit
 API & Obligations LMSGetValue():CMI Mandatory

 Name Format “cmi.core.credit” Case sensitive.
 Value Format “credit” or “no-credit” Case sensitive. All characters must be present.
 Data type CMIVocabulary:Credit

Examples grading = LMSGetValue(“cmi.core.credit”)
 var creditFlag = LMSGetValue(“cmi.core.credit”)

if (creditFlag == “credit”
{
 // Student is taking course for credit. Handle appropriately.
}
else
{
 // Student is taking course for no credit. Handle appropriately.
}

2.1.6 Core.Lesson Status

Data Element Name Core.Lesson Status
Definition The current student status for a given AU. The CMI system determines

this status based on data returned from the AU and other factors. Six
status values are possible:
• passed: A necessary number of objectives in the AU were mastered

by the student, and/or the necessary score was achieved. Student is
considered to have “completed” the AU and “passed”.

• completed: The AU may or may not be “passed”, but all the elements
in the AU were experienced by the student. The student is
considered to have completed the AU. For instance, “passing” may
depend on a certain minimum score known to the CMI system.

• failed: The AU was not passed. The student experienced some kind
of assessment within the AU but did not demonstrate mastery of the
AU’s instruction material. The student has viewed some (or all) of the
AU’s instructional material.

• incomplete : The AU was started but not finished. The student did not
view all the required elements in the AU.

• browsed: The student launched the AU with a CMI mode of Browse.
• not attempted: Incomplete implies that the student made an attempt

to perform the AU, but for some reason was unable to finish it. Not
attempted means that the student did not even begin the AU. Maybe
he just read the table of contents, or AU abstract and decided he was
not ready. Any algorithm within the AU may be used to determine
when the AU moves from "not attempted" to "incomplete".

Usage The CMI initializes Core.Lesson Status to “not attempted”.

Except for course structures with complex logic statements, a
Core.Lesson Status value of “passed” or “completed” is treated the same
for course prerequisites and completion requirements.

AICC - CMI Guidelines for Interoperability

August-16-2004 22 CMI001 Version 4.0

Data Element Name Core.Lesson Status

Normally, the AU determines Core.Lesson Status and passes it to the
CMI. On re-entry into the AU, the CMI passes the previous status
returned by the AU. However, the CMI can change the status based on
the following rules:

1) If Core.Credit is set to “credit” and there is a value for Student
Data.Mastery Score and the AU returns a value for
Core.Score.Raw, the CMI can change the status to either passed or
failed depending on whether the student's score meets/exceeds
Student Data.Mastery Score. If there is no value returned by the AU
session for Core.Score.Raw, the CMI does not change the status
using this rule.

2) If the AU is part of a course that has completion requirements in its
course structure, then the CMI can change the status depending on
the completion requirements rules defined (see Course
Elements.Completions.Requirement).

3) If there is no value for Student Data.Mastery Score passed to AU
and there are no completion requirements rules defined (in the
course structure), then the CMI cannot override an AU determined
status.

4) If the CMI sets Core.Credit to “no-credit” for the AU session, the CMI
is not allowed to change/update Core.Lesson Status unless the
initial value of Core.Lesson Status was “not attempted”. In this
particular case, Core.Lesson Status is changed to “browsed”. (See
Core.Credit)

5) The CMI cannot change a previously (CMI) recorded Core.Lesson
Status to “not attempted” in the course of normal operation.

CMI Behavior The CMI is responsible for setting the initial value of Core.Lesson Status
to "not attempted". The CMI may further “preset” the value of
Core.Lesson Status (prior to the first student launch) based the
completion requirements rules (see Course
Elements.Completions.Requirement).

Manual manipulation of Core.Lesson.Status by administrative users is
outside the scope of this specification.

AU Behavior In File & HACP binding’s the AU is required to report status. With the API
binding, the AU is not required to report status.

File Binding
 Name Lesson_Status
 Files & Obligations Startup: CMI Mandatory

Finish: AU Mandatory

 Name Format “Lesson_Status” case insensitive
 Value Format One of the following vocabulary values: “passed” , “failed”, “complete”,

“incomplete”, “not attempted”, or “browsed”. All values are case
insensitive. Only the first character is significant.

 Data type CMIVocabularyINI:Status
 Examples lesson_status = Passed
 LESSON_STATUS = c
 LessoN_Status = F
HACP Binding
 Name Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 23 CMI001 Version 4.0

Data Element Name Core.Lesson Status
HACP Message(s)
& Obligations

GetParam(response) : CMI Mandatory
PutParam : AU Mandatory

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.core.lesson_status
 API & Obligations LMSGetValue() : CMI Mandatory

LMSSetValue() : CMI Mandatory

 Name Format “cmi.core.lesson_status” case sensitive
 Value Format A specific vocabulary limited to one of the following values: “passed”,

“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”. All
values are case sensitive

 Data type CMIVocabulary:Status
 Examples var x = LMSGetValue(“cmi.core.lesson_status”)
 LMSSetValue(“cmi.core.lesson_status”, “passed”)

2.1.7 Core.Exit

Data Element Name Core.Exit
Definition An indication of how or why the student left the AU.
Usage This element can only be set by the AU. There are four possible values:

• "time-out": This indicates the AU ended because the AU has
determined an excessive amount of time has elapsed with no student
interaction, or the “max_time_allowed” has been exceeded.

• "suspend": This indicates the student leaves the AU with the intent
of returning to it later at the point where he/she left.

• "logout": This indicates that the student logged out from within the
AU instead of returning to the CMI system to log out. The AU passed
control to the CMI system, and the CMI system automatically logged
the student out of the course -- after updating the appropriate data
model elements. CMI would then require the student to re-
authenticate (login) prior to viewing any other material in the course.

• Empty string – an empty string (“”) or no value given indicates a
normal exit state.

CMI Behavior Notes The CMI does not initialize this element.

“logout” behavior: If the CMI receives a logout value from an AU it must
logout the student (after the AU session terminates). The student would
then be required to re-authenticate (login) prior to viewing other material
in the course.

“time-out” behavior: The CMI may provide a visual cue to the student
indicating that the reporting AU was terminated due to a time-out. The
CMI may also exhibit logout behavior in addition to this visual cue.

“suspend” behavior: The CMI may provide a visual cue indicating that
the student exited with AU with the intent of returning to it later. The CMI
must set Core.Entry to “resume” on the next launch of this AU.

AICC - CMI Guidelines for Interoperability

August-16-2004 24 CMI001 Version 4.0

Data Element Name Core.Exit

AU Behavior Notes “logout” behavior: The AU should provide a visual cue to the student as
to which action will cause a logout value to be reported to the CMI.

File Binding
 Name AU Lesson_Status Flag
 Files & Obligation Finish : CMI Mandatory

 Name Format Not Applicable. It is an appended to the Lesson_Status keyword/value

pair.
 Value Format This element is appended to the keyword/value pair of Lesson_Status

with “,” (comma) preceding it. There may be spaces trailing and leading
this comma. The element value is case-insensitive with only the first
character being significant. If the element is not present, a normal exit
shall be assumed.

 Data type CMIVocabularyINI:Exit
 Examples LESSON_Status = Passed, Logout
 Lesson_Status = Complete, t
 LESSON_Status = I, S
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligation

PutParam : CMI Mandatory

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.core.exit
 API & Obligation LMSSetvalue() : CMI Mandatory

 Name Format “cmi.core.exit” – case sensitive
 Value Format The value must be one of the following: “time-out” , “logout” , “suspend”

or the empty string (“”).
 Data type CMIVocabulary:Exit
 Examples LMSSetValue("cmi.core.exit","time-out")

2.1.8 Core.Entry

Data Element Name Core.Entry
Definition Indication of whether the student has entered the AU before.
Usage This element is set by the CMI and is only readable by the AU. Three

possible values for Core.Entry :
• "ab-initio": This indicates it is the first time the student is entering the

AU. Because the student may have passed all of the objectives in a
AU by completing a pre-test, the lesson_status of not attempted is not
a reliable indicator. That is, an AU may be passed without the
student having ever seen it.

• "resume": This indicates that the student was in the AU earlier. The
student is resuming a suspended AU. Core.Entry is only set to this
value if Core.Exit was set to “suspend” in the previous AU session.

• "": The empty string should be used to represent an entry into the AU
that is neither an initial (ab-initio) nor a continuation from a suspended

AICC - CMI Guidelines for Interoperability

August-16-2004 25 CMI001 Version 4.0

Data Element Name Core.Entry
state (resume). A scenario that might be used is if the AU was
already completed and then later it was loaded for review purposes.
In this case it was neither an initial launch (ab-initio) nor a
continuation from a suspended state (resume).

When a student enters the AU for the first time the Core.Entry element
must be set to “ab-initio” by the CMI. If the student re-enters an AU that
previously exited with a value of “suspend”, then the entry flag must be
set to “resume” by the CMI.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name CMI Lesson_Status Flag
 Files & Obligations Startup: CMI mandatory

 Name Format Not Applicable. It is an appended to another keyword/value pair
 Value Format This element is appended to the keyword/value pair of Lesson_Status

with “,” (comma) preceding it. There may be spaces trailing and leading
this comma. The element value is case-insensitive with only the first
character being significant. This element is not present if the value is
empty string.

 Data type CMIVocabularyINI:Entry
 Examples LESSON_STATUS = NA , A
 lesson_status = p, a
 lesson_status = f, r
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response) : CMI Mandatory

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.core.entry
 API & Obligations LMSGetValue() : CMI mandatory

 Name Format “cmi.core.entry” case sensitive
 Value Format One of the following values: “ab-initio”, “resume” , or empty string (“”). All

values are case sensitive.
 Data type CMIVocabulary:Entry
 Examples var entry_val = LMSGetValue("cmi.core.entry")

2.1.9 Core.File Path

Data Element Name Core.File Path
Definition This element indicates to the AU where additional (AU-specific) data files

may be written by the AU. The directory path indicated by this element is
unique to an individual student for a given AU in a given course.

Usage A (logically or explicitly) unique directory location must be maintained by
the CMI for an individual student data for a given AU in a given course.

AICC - CMI Guidelines for Interoperability

August-16-2004 26 CMI001 Version 4.0

Data Element Name Core.File Path
The path to this location must be provided to the AU at launch time.

CMI Behavior Notes CMI Implementations of this element will vary widely depending
distribution of writable local drive volumes, (network) shared drive
volumes, and storage management features.

CMI implementations may require the student to use a specific
workstation or specific shared network volumes to support this element.

AU Behavior Notes
File Binding
 Name Path
 Files & Obligations Startup : CMI Mandatory

 Name Format “Path” – case insensitive
 Value Format Fully qualified Windows directory path specification with drive letter(s),

directory path.

<Drive Letter>:\<directories>\

Embedded spaces in directory names are allowed. Non printable
characters and < > ? * ” / \ : are not allowed in directory names.
Directory names are separated by \’s (back slashes). Leading and trailing
spaces are not allowed around the back slashes.

 Data type CMIDirectoryNameFull
 Examples Path=X: \CMI student data\course 101\joe student\
 Path = D:\USERDATA\CRS123\USER123\
HACP Binding
 Name Not Applicable

HACP Message(s) &
Obligations

Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

2.1.10 Core.Score

Data Element Name Core.Score

AICC - CMI Guidelines for Interoperability

August-16-2004 27 CMI001 Version 4.0

Data Element Name Core.Score
Definition This data element indicates the performance of the student during his last

session in the assignable unit. It may have up to three sub-elements:
Core.Score.Raw, Core.Score.Max, and Core.Score.Min.

Score.Raw
This may be an unprocessed or processed indicator of how the student
performed with the interactions he experienced.
Score.Max
This is the largest score the student could have achieved with the
interactions that he experienced.
Score.Min
This is the smallest score that the student could have achieved with the
interactions he/she experienced.

Usage If Score.Raw is not accompanied by Score.Max or Score.Min, it may be

determined and calculated in any manner that makes sense to the
program designer. For instance, it could reflect the percentage of
objectives complete, it could be the raw score on a multiple choice test, or
it could indicate the number of correct first responses to the embedded
questions in the AU.

If the value return by the AU session for Score.Raw is empty string (“”) ,
then the student is considered to have not visited the scored portion of the
content.

If Score.Raw is accompanied by Score.Max or Score.Min, it reflects the
performance of the learner relative to the max and min values.

If Score.Max accompanies Score.Raw with no Score.Min, Score.Min is
assumed to be “0”.

If Score.Min is included then Score.Max must be also be included.

The value of each of the score sub-elements (in relation to one another)
must be as follows:

Score.Max >= Score.Raw >= Score.Min

The AU is responsible for setting this element and the CMI is responsible
for providing the previous AU session value for this element given the
rules:

• CMI must initialize this element to an empty string ("") upon
initial launch of an AU.

• On subsequent launches of an AU, The CMI must provide the
value rec orded by the AU in the last session in which
Core.Credit had a value of “credit.

• If the AU sets this value multiple times in a session, only the
final value is recorded by the CMI (When Core.Credit has a
value of “credit”)

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Score

AICC - CMI Guidelines for Interoperability

August-16-2004 28 CMI001 Version 4.0

Data Element Name Core.Score
 In Files &
Obligations

Startup, Finish:
Core.Score.Raw: CMI Mandatory. AU Mandatory
Core.Score.Max: If Core.Score.Min exists, then CMI and AU

Mandatory, otherwise optional.
Core.Score.Min: CMI and AU Optional

 Name Format “Score” Case insensitive.
 Value Format Empty string or comma separated list of numeric scores. See description

for data type CMIScoreINI
 Data type CMIScoreINI
 Examples SCORE= 79

 SCORE= 0.654

 Score = 8, 10 , 0

; Raw score of 8 with a maximum possible of 10 and minimum of 0.

 score=1.3, 2
; Raw score of 1.3 with a maximum of 2. Min is assumed to be 0.

 Score=

; Either the student's first entry or he did not attempt
; any scored interactions in his earlier use of the AU.

HACP Binding
 Name Score
 HTTP Messages &
Obligations

GetParam, PutParam:
Core.Score.Raw: CMI Mandatory, AU Mandatory
Core.Score.Max: If Core.Score.Min exists, then CMI Mandatory and

AU Mandatory, otherwise optional.
Core.Score.Min: Optional (CMI and AU)

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.core.score
 API & Obligations LMSGetValue() and LMSSetValue() :

Core.Score.Raw: CMI Mandatory
Core.Score.Max: CMI Mandatory. If Core.Score.Min exists AU

mandatory, otherwise AU optional.
 Core.Score.Min: CMI Mandatory, AU Optional

 Name Format “cmi.core.score.raw”, “cmi.core.score.max”, “cmi.core.score.min” Case

sensitive.
 Value Format Single decimal number or empty string “” (for each sub element).
 Data type CMIDecimal (for each sub-element)
 Examples LessonScore = LMSGetValue(“cmi.core.score.raw”)
 LessonRaw = LMSGetValue(“cmi.core.score.raw”)

LessonMax = LMSGetValue(“cmi.core.score.max”)
LessonMin = LMSGetValue(“cmi.core.score.min”)

 Success_state = LMSSetValue(“cmi.core.score.raw” , “.83”)

AICC - CMI Guidelines for Interoperability

August-16-2004 29 CMI001 Version 4.0

2.1.11 Core.Session Time

Data Element Name Core.Session Time
Definition The amount of time in hours, minutes, and seconds that the student has

spent in the AU at the time they leave it. This represents the time from
beginning of the session to the end of a single use of the AU.

Usage Used to keep track of the time spent in an AU for a session. Only the
AU sets this element.

CMI Behavior Note If the AU does not report a value for Core.Session Time (or reports an
empty string), then the CMI may use its own internal time tracking
mechanism to determine Core.Session Time (and add to Core.Total
Time).

The CMI will use the values reported via this element to calculate the
Core.Total Time (which is a total of all Core.Session Time values
reported by a given AU for a given student)

AU Behavior Note During an AU session, the AU may record Core.Session Time multiple
times. Should this occur, only the final instance will be recorded for the
AU session and added to Core.Total Time.

File Binding
 Name AU Time
 Files & Obligations Finish: AU Mandatory

 Name Format “Time” – case insensitive
 Value Format See Datatype CMITimespan
 Data type CMITimespan
 Examples Time = 02:34:05
 TIME = 1002:34:05
 Time = 00:12:23.3
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutParam : AU Mandatory
PutParam : CMI Mandatory

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.core.session_time
 Supported API LMSSetValue()
 Obligation LMSSetValue() : CMI Mandatory
 Name Format “cmi.core.session_time” – case sensitive
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples LMSSetValue("cmi.core.session_time","0000:12:30")
 LMSSetValue("cmi.core.session_time","03:11:23.45")
 LMSSetValue("cmi.core.session_time","00:18:29")

AICC - CMI Guidelines for Interoperability

August-16-2004 30 CMI001 Version 4.0

2.1.12 Core.Total Time

Data Element Name Core.Total Time
Definition Accumulated time of all the student sessions of the AU in a given

course.
Usage Used to keep track of the total time spent in every session of a given

AU for a given student (enrolled in a given course).
CMI Behavior Notes CMI must initialize the Core.Total Time to a (valid time) value of zero

the first time the AU is launched and then use the Core.Session Time
values reported by the AU (for each session) to keep a running total.

AU Behavior Notes
File Binding
 Name Time
 Files & Obligations Startup : CMI Mandatory

 Name Format “Time” – case insensitive
 Value Format See Datatype
 Data type CMITimespan
 Examples Time = 1002:34:05
 TIME = 02:34:05
 Time = 019:12:23.3
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response) : CMI Mandatory

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.core.total_time
 API & Obligations LMSGetValue() : CMI Mandatory

 Name Format ‘’cmi.core.total_time” – case sensitive
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples var x = LMSGetValue(“cmi.core.total_time”)

2.1.13 Core.Lesson Mode

Data Element Name Core.Lesson Mode
Definition Identifies the AU behavior desired after launch. Many AU’s have a

single “behavior”. Some AU’s, however, can present different amounts
of information, or present information in different sequences, or present
information reflecting different training philosophies based on an
instructor’s or designer’s decisions. Designers may enable AU’s to
behave in a virtually unlimited number of ways. This element supports
the communication of three parameters that may result in different AU
behaviors.

Usage This element is set by the CMI. There are three possible values:
• "browse": The student wants to preview the materials, but not

necessarily challenge the AU for an assessment, grade, or
evaluation of any kind. The CMI must set Core.Credit to “no-credit”

AICC - CMI Guidelines for Interoperability

August-16-2004 31 CMI001 Version 4.0

Data Element Name Core.Lesson Mode
if a mode of “browse” is used. Also if “browse” mode is used and
the current status is “not attempted”, the Core.Lesson Status will
set to “browsed” by the CMI regardless of what status the AU
provides.

• "normal": This indicates that the AU should behave as designed
for a student wanting to get credit for his learning.

• "review": The student has already seen the material at least once
and been graded. The CMI must set Core.Credit to “no-credit” if a
mode of “review” is used

If an unrecognized or unanticipated Core.Lesson Mode is received,
then the mode the AU designer considers normal is assumed by the
AU. (“normal” mode is the default)

CMI Behavior Notes If Core.Lesson Mode is supported in the CMI, the CMI should have a
user interface that allows to the student user the ability to select the
mode that the AU will be launched with.

AU Behavior Notes If an AU supports Core.Lesson Mode, the AU must return a
Core.Lesson Status of “browsed” if launched in “browse” mode.

File Binding
 Name Lesson_Mode
 Files & Obligations Startup : CMI Optional

Startup : AU optional

 Name Format “Lesson_Mode” – case insensitive
 Value Format One of the following values: “browse” , “normal”, “review”. All values are

case insensitive. Only the first character is significant.
 Data type CMIVocabularyINI:Mode
 Examples Lesson_mode = Normal
 Lesson_MODE = r
 LESSON_MODE = browse
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response) : CMI optional
GetParam (response) : AU optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.core.lesson_mode
 API & Obligations LMSGetValue() : CMI Optional

 Name Format “cmi.core.lesson_mode” – case sensitive
 Value Format One of the following values: “browse” , “normal”, “review”. All values are

case sensitive.
 Data type CMIVocabulary:Mode
 Examples var x = LMSGetValue(“cmi.core.lesson_mode”)

2.2 Suspend Data
Data Element Name Suspend Data

AICC - CMI Guidelines for Interoperability

August-16-2004 32 CMI001 Version 4.0

Data Element Name Suspend Data
Definition Unique information generated by the AU during previous sessions for a

given student that is needed for the current AU session. This data is
created by the AU and stored by the CMI to pass back to the AU the
next time the AU is run. This element typically used by the AU to
retrieve previous state information from the last session (i.e. “restart” or
“book-marking” information).

Usage An AU can set this value at any anytime prior to AU session exit. The
AU then could use this information in the next session for that AU.

CMI Behavior Notes The CMI must set aside a space for this element for each AU in the
course(s) for each student. It stores this data and returns it to the AU
when it is run again. The CMI shall retain this data as long as the
student is enrolled in (or has access to) the course.

The CMI is not required to report on this data element.

AU Behavior Notes
File Binding
 Name Core_Lesson
 Files & Obligations Finish: CMI Mandatory, AU optional

Startup: CMI Mandatory, AU optional

 Name Format “[Core_Lesson]” case insensitive
 Value Format A string of up to 4096 characters in length located in the

“[Core_Lesson]” group. The string format is free-form with the following
restrictions:

• Square brackets “[]” are not allowed.
• Leading and trailing whitespace (carriage-returns, tabs, spaces)

are not included.
• Embedded whitespace is allowed and must be included

(See Data Type CMIString4096INI for more detail)
 Data type CMIString4096INI
 Examples ; In this example the value for

; Core_Lesson starts with “9” and ends with “z”.

 [CORE_lesson]

9 00 001010101100110

000 001010101100110
000001010101100110

rtgagfhdfhjkhjkhjk
gl’;sdfgl’;sdfhgl’;sdfhgls’;df
z

[Core_Vendor]

 ; This example shows how keyword/value pairs could
; be used in CORE_Lesson.

[CORE_Lesson]

AICC - CMI Guidelines for Interoperability

August-16-2004 33 CMI001 Version 4.0

Data Element Name Suspend Data
1BookMark = Some book mark data
2BookMark = Some more book mark data

1StateData = Some state data
2StateData = Some more state data.

HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (Response): CMI Mandatory, AU optional
PutParam: CMI Mandatory, AU optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.suspend_data
 API & Obligations LMSGet value(): CMI Mandatory, AU optional

LMSSetvalue(): CMI Mandatory, AU optional

 Name Format “cmi.suspend_data” – case sensitive
 Value Format A 4096 character string. The string format is free-form with the

following restrictions:
• Square brackets “[]” are not allowed.
• Leading and trailing whitespace (carriage-returns, tabs, spaces)

are not included.
• Embedded whitespace is allowed and must be included

(See Data Type CMIString4096INI for more detail)
 Data type CMIString4096INI
 Examples

2.3 Launch Data
Data Element Name Launch Data
Definition Unique information specific to an AU that is needed for every use.

Without this information, an AU may not execute.

Usage The data contained in this element is static and will always be the same
for a given AU in a given course.

CMI Behavior Notes A CMI system must allow for administrative users to add Launch data
for AU’s through course structure import. In addition, a CMI system
should also allow a user interface for administrative users to directly
enter Launch data information for a given AU.

AU Behavior Notes
File Binding
 Name Core_Vendor
 Files & Obligations Startup: CMI Mandatory, AU Optional

 Name Format “[Core_Vendor]” – case insensitive
 Value Format A string of up to 4096 characters in length located in the

AICC - CMI Guidelines for Interoperability

August-16-2004 34 CMI001 Version 4.0

Data Element Name Launch Data
“[Core_Vendor]” group. The string format is free-form with the following
restrictions:

• Square brackets “[]” are not allowed.
• Leading and trailing whitespace (carriage-returns, tabs, spaces)

are not included.
• Embedded whitespace is allowed and must be included

(See Data Type CMIString4096INI for more detail)

 Data type CMIString4096INI
 Examples ; In this example the value for

; Core_Vendor starts with “L” and ends with “8”.
; The second “[core_vendor]” is ignored.

 [CORE_Vendor]

Launch stuff …
00110

rtgagfhdfhjkhjkhjk
gl’;sdfgl’;sdfhgl’;sdfhgls’;df

8

[Core_Lesson]

 ; This example shows how keyword/value pairs could
; be used in CORE_VENDOR.

[CORE_Vendor]
LaunchParam1 = Some launch stuff
LaunchParam2 = Some more launch stuff
LaunchParam3 = Some launch stuff

HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (Response): CMI Mandatory, AU optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.launch_data
 API & Obligations LMSGetvalue() : CMI Mandatory, AU Optional

 Name Format “cmi. launch_data” – case sensitive
 Value Format A 4096 character string. The string format is free-form with the

following restrictions:
• Square brackets “[]” are not allowed.
• Leading and trailing whitespace (carriage-returns, tabs, spaces)

are not included.
• Embedded whitespace is allowed and must be included

AICC - CMI Guidelines for Interoperability

August-16-2004 35 CMI001 Version 4.0

Data Element Name Launch Data
(See Data Type CMIString4096INI for more detail)

 Data type CMIString4096INI
 Examples

2.4 Comments From Learner
Data Element Name Comments From Learner
Definition This data element contains freeform textual feedback (comments) from

a student user during an AU session. The comment (or set of
comments) may also have an indication of where or when in the AU it
was created.

Usage A comment (or set of comments) input by the student user of the AU
while in an AU session. The AU collects the data for this element and
reports it to the CMI system.

In the API binding, sequential LMSSetValue() commands create
additional comments adding to the string. Comments are not replaced.

CMI Behavior Notes The CMI system should have a mechanism to report comments
(collected using this element) to administrative users.

AU Behavior Notes The user may have the option of leaving comments at any point in the
AU.

File Binding
 Name AU Comments
 Files & Obligations Finish: CMI Optional, AU Optional

 Name Format “[COMMENTS]” – case insensitive
 Value Format A string of type CMICommentINI located in the “[Comments]” group.

Multiple comments can be included in this string. (See data type
definition for CMIComment4096INI)

Leading and training whitespace is not included in this string.

 Data type CMIComment4096INI
 Examples ; The string contents start at the “<1>” and

; end at the “<e.4>” (inclusive)
[COMMENTS]

<1>The background color is too blue!<1.e><2>The CDU
panel has the incorrect ‘way points’ displayed for
this route. <2.e><3>The CDU panel has the incorrect
‘way points’ displayed for this route. <3.e><4>The
CDU panel has the incorrect ‘way points’ displayed
for this route. <e.4>

[Evaluation]

HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 36 CMI001 Version 4.0

Data Element Name Comments From Learner
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.comments
 API & Obligations LMSGetValue() : CMI Optional, AU Optional

LMSSetValue() : CMI Optional, AU Optional
 Name Format “cmi.comments”
 Value Format 4096 Character string. The format is “free form”. There is no formatting

structure to separate multiple comments in an AU session. Square
brackets “[]” are not allowed.

 Data type CMIString4096INI
 Examples LMSSetValue(“cmi.evaluation.comments”,”This color is ALL wrong !!”)

AICC - CMI Guidelines for Interoperability

August-16-2004 37 CMI001 Version 4.0

2.5 Itemized Comments From Learner
Data Element Name Itemized Comments From Learner
Definition An array of comments (freeform textual feedback) made by the

student user during an AU session. Each record in this array is
made up of the following sub-elements:

Itemized Comments From Learner.Content
Itemized Comments From Learner.Date
Itemized Comments From Learner.Location
Itemized Comments From Learner.Time

Each array record sub-element is described individually in this section.

This data element is an alternative to Comments From Learner.

Usage A set of free-form textual comments input by the student user of
the AU while in an AU session. The AU collects the data for this
element and reports it to the CMI system.

Each individual comment is itemized as separate array element
with additional sub elements.

CMI Behavior Notes If a CMI receives data from the AU in both Itemized Comments From
Learner and Comments From Learner, the CMI must save the Itemized
Comments From Learner and discard the Comments From Learner
data.

AU Behavior Notes An AU should only use one method for student comments collection,
Itemized Comments From Learner or Comments From Learner.

2.5.1 Itemized Comments From Learner.Content

Data Element Name Itemized Comments From Learner.Content
Definition This data element contains freeform textual feedback (a comment) from

the student user during an AU session.
Usage A comment input by the student user of the AU while in an AU session.

The AU collects the data for this element and reports it to the CMI
system.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Comment
 Files & Obligations Comments File : CMI Optional, AU Optional

 Name Format Field Name: “Comment” case insensitive
 Value Format A free-form text string with no double quotes (“)s or carriage returns, or

control characters allowed.
 Data type CMIString255CSV
 Examples This is ‘comment’ example.
 This is another ‘comment’ example.
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutComments : CMI Optional, AU Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 38 CMI001 Version 4.0

Data Element Name Itemized Comments From Learner.Content
 Obligation
 Name Format Not Applicable
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.evaluation.comments.n.content
 API & Obligations LMSGetValue() : CMI Optional, AU Optional

LMSSetValue() : CMI Optional, AU Optional

 Name Format “cmi.evaluation.comments.n.content” - case sensitive where n is the

index of the array record .
 Value Format A free-form text string with no double quotes (“)s or carriage returns, or

control characters allowed.
 Data type CMIString255CSV
 Examples LMSSetValue(“cmi.evaluation.comments.2.content”,”This color is ALL wrong !!”)

 var last_comment = LMSGetValue(“cmi.evaluation.comments.1.content”)

AICC - CMI Guidelines for Interoperability

August-16-2004 39 CMI001 Version 4.0

2.5.2 Itemized Comments From Learner.Date

Data Element Name Itemized Comments From Learner.Date
Definition The date (including year, month, and day) at which the student user

made the comment.
Usage
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Date
 Files & Obligations Comments File: CMI Optional, AU Optional

 Name Format Field Name: “Date” case insensitive
 Value Format See CMIDate data type definition
 Data type CMIDate
 Examples 1992/05/20
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutComments: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

AICC - CMI Guidelines for Interoperability

August-16-2004 40 CMI001 Version 4.0

2.5.3 Itemized Comments From Learner.Location

Data Element Name Itemized Comments From Learner.Location
Definition Indication of where in the AU that the student user made the comment.
Usage
CMI Behavior Notes
AU Behavior Notes When a developer builds an Assignable Unit, he may give individual

sections or frames in the unit their own identifiers or names. These
may be used to indicate to which part of the AU the student comment
refers.

File Binding
 Name Location
 Files & Obligations Comments File: CMI Optional, AU Optional

 Name Format Field Name: “Location” case insensitive
 Value Format 255 character string without (”)s, carriage returns, or control characters.
 Data type CMIString255CSV
 Examples Frame 13
 Position 4-5
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutComments: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.evaluation.comments.n.location
 API & Obligations LMSGetValue() : CMI Optional, AU Optional

LMSSetValue() : CMI Optional, AU Optional

 Name Format “cmi.evaluation.comments.n.location” - case sensitive where n is the

index of the array record.
 Value Format 255 character string without (”)s, carriage returns, or control characters.

(See Data Type CMIString255CSV for more detail)
 Data type CMIString255CSV
 Examples

AICC - CMI Guidelines for Interoperability

August-16-2004 41 CMI001 Version 4.0

2.5.4 Itemized Comments From Learner.Time

Data Element Name Itemized Comments From Learner.Time
Definition A chronological point in a 24-hour clock (i.e. “the time”). Identified in

hours, minutes and seconds. The time at which the student makes the
comment.

Usage At the moment that the student user completes a comment, the AU
should get the time and record it in this element.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Time
 Files & Obligations Comments File: CMI Optional, AU Optional

 Name Format Field Name: “Time” case insensitive
 Value Format See data type CMITime for format description.
 Data type CMITime
 Examples 12:05:33

13:06:14.8
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutComments: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.evaluation.comments.n.time
 API & Obligations LMSGetValue() : CMI Optional, AU Optional

LMSSetValue() : CMI Optional, AU Optional

 Name Format “cmi.evaluation.comments.n.time” – case sensitive where n is the index

of the array record.
 Value Format See CMITime data type Definition
 Data type CMITime
 Examples

AICC - CMI Guidelines for Interoperability

August-16-2004 42 CMI001 Version 4.0

2.6 Comments From LMS
Data Element Name Comments From LMS
Definition This element represents comments that would come from the CMI. An

example of how this might be used is in the form of instructor comments
directed to a particular student (or group of students). These types of
comments are directed at the student from the CMI so that the AU may
present them to the student when appropriate.

Usage A comment or set of comments input by an instructor or administrative
user using the CMI system. The AU reads this data and displays it to
the student.

CMI Behavior Notes The CMI system may have a mechanism to allow instructors to direct
their comments to specific student(s).

AU Behavior Notes An AU may display comments from the CMI at the beginning of each
session.

File Binding
 Name CMI Comments
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “[COMMENTS]” – case insensitive
 Value Format A string of type CMICommentINI located in the “[Comments]” group.

Multiple comments can be included in this string. (See data type
definition for CMIComment4096INI)

Leading and training whitespace is not included in this string. Square
brackets “[]” are not allowed.

 Data type CMIComment4096INI
 Examples ; The string contents start at the “<1>” and

; ends at the “<e.4>” (inclusive)
[COMMENTS]

<1>Notice that the background color is too
blue!<1.e><2>Notice that the CDU panel has the
incorrect ‘way points’ displayed for this route in
the Taxi-Out phase. <2.e><3> Notice the CDU panel has
the incorrect ‘way points’ displayed for this route
in the Climb Phase. <3.e><4> Notice the CDU panel has
the incorrect ‘way points’ displayed for this route
in Cruise. <e.4>

[Evaluation]

HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.comments_from_lms

AICC - CMI Guidelines for Interoperability

August-16-2004 43 CMI001 Version 4.0

Data Element Name Comments From LMS
 API & Obligations LMSGetValue() : CMI Optional , AU Optional

 Name Format “cmi.comments_from_lms”
 Value Format 4096 Character string. The format is “free form”. There is no formatting

structure to separate multiple comments in an AU session. Square
brackets “[]” are not allowed.

 Data type CMIString4096INI
 Examples var instructor_comments = LMSGetValue (“cmi.comments_from_lms”)

AICC - CMI Guidelines for Interoperability

August-16-2004 44 CMI001 Version 4.0

2.7 Evaluation
Data Element Name Evaluation
Definition A grouping for a variety of data elements that are provided to the

AU by the CMI.
Usage All data elements in this category are optional.
Membership Evaluation.Comments_File

Evaluation.Course_ID
Evaluation.Interactions_File
Evaluation.Objective_Status_File
Evaluation.Path_File
Evaluation.Performance_File

2.7.1 Evaluation.Comments_File

Data Element Name Evaluation.Comments_File
Definition A fully qualified file path for the Comments file, which the AU should

construct if it is to pass itemized comments back to the CMI system.

See (the “File Binding” of) Itemized Comments from Learner for the data
format of this file. (This data element is only used in the File-Binding)

Usage CMI determines the location for the Comments File
AU writes the Comments file at this location prior to session termination.
If this element is not present or set to an empty string, then a comments
file will not be written.

CMI Behavior
AU Behavior AU writes the Comments file at this location prior to session termination.

The AU may append records to this file during different points in an AU’s
session.

File Binding
 Name Comments_File
 Files & Obligations Comments_File : CMI Optional, AU Optional

 Name Format “Comments_File” - case insensitive
 Value Format See description for the CMIFileNameFull data type
 Data type CMIFileNameFull
 Examples Comments_File = C:\windows\itemized_comments.txt

 COMMENTS_FILE = BB:\somment.cmi

 COMMENTS_FILE = C:\ directory with spaces\file with spaces.txt

HACP Binding
 Name Not Applicable

HACP Message(s)
& Obligations

Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

AICC - CMI Guidelines for Interoperability

August-16-2004 45 CMI001 Version 4.0

Data Element Name Evaluation.Comments_File

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

2.7.2 Evaluation.Course_ID

Data Element Name Evaluation.Course_ID
Definition The unique identifier for the course of which the current AU is a part. See

COURSE_ID in the course structure.
Usage The CMI provides the Course ID from the course structure to the AU. The

AU used this value of this element to provide Course ID when reporting
data out to the following elements:

Itemized Comments From Learner
Interactions
Objectives
Paths

CMI Behavior Notes
AU Behavior Notes AU uses the value of this element to provide Course ID for reporting other

data elements in fi les or messages that require Course ID.
File Binding
 Name Course_ID
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Course_ID” – case insensitive
 Value Format See data type CMIIdentifierDevID for format description.

While the CMIIdentifierDevID data format is valid, it is recommended that
data type CMIIdentifierGUID’s formatting rules be used instead to reduce
the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMIIdentifierDevID.

 Data type CMIIdentifierDevID
 Examples 737-300-UAL-RND1
 SCORM-101
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

Getparam(response) : CMI Optional, AU Optional

 Obligation Getparam(response) : CMI Optional, AU Optional
 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

AICC - CMI Guidelines for Interoperability

August-16-2004 46 CMI001 Version 4.0

2.7.3 Evaluation.Interactions_File

Data Element Name Evaluation. Interactions_File
Definition A fully qualified file path for the Interactions file, which the AU should

construct if it is to pass Interactions data back to the CMI system. See
(the “File Binding” of) Interactions for the data format of this file.

This data element is only used in the File-Binding.

Usage The CMI determines the location for the Interactions File
The AU writes the Interactions file at this location prior to session
termination. If this element is not present or set to an empty string, then
the Interactions File will not be written.

CMI Behavior Notes After the AU session has terminated, the CMI should read and store the
contents of this file (and provide a reporting mechanism for administrative
users).

AU Behavior Notes The AU may append records to this file during different points in an AU’s
session.

File Binding
 Name Interactions_File
 Files & Obligations Interactions_File: CMI Optional, AU Optional

 Name Format “Interactions_File” - case insensitive
 Value Format See description for the CMIFileNameFull data type
 Data type CMIFileNameFull
 Examples Interactions_File = C:\windows\interact.cmi

 Interactions_File = BB:\inter.txt

 Interactions_File = C:\ directory with spaces\file with spaces.txt

HACP Binding
 Name Not Applicable

HACP Message(s)
& Obligations

Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

2.7.4 Evaluation.Objective_Status_File

Data Element Name Evaluation.Objective_Status_File
Definition A fully qualified file path for the Objective_Status file, which the AU should

construct if it is to pass itemized objectives back to the CMI system.

AICC - CMI Guidelines for Interoperability

August-16-2004 47 CMI001 Version 4.0

Data Element Name Evaluation.Objective_Status_File

See (the “File Binding” of) Objectives for the data format of this file.

This data element is only used in the File-Binding.

Usage The CMI determines the location for the Objective_Status File
The AU writes the Objective_Status file at this location prior to session
termination. If this element is not present or set to an empty string, then
the Objective_Status File will not be written.

CMI Behavior Notes After the AU session has terminated, the CMI should read and store the
contents of this file (and provide a reporting mechanism for administrative
users).

AU Behavior Notes The AU may append records to this file during different points in an AU
sessions.

File Binding
 Name Objective_Status_File
 Files & Obligations Objective_Status_File: CMI Optional, AU Optional

 Name Format “Objective_Status_File” - case insensitive
 Value Format See description for the CMIFileNameFull data type.
 Data type CMIFileNameFull
 Examples Objective_Status_File = C:\windows\Objectives status.cmi

 Objective_Status_File = X:\objstat.txt

 Objective_Status_File = C:\dir1\file with spaces.txt

HACP Binding
 Name Not Applicable

HACP Message(s)
& Obligations

Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

2.7.5 Evaluation.Path_File

Data Element Name Evaluation.Path_File
Definition A fully qualified file path for the Path file, which the AU should construct if

it is to pass Path data back to the CMI system.

See (the “File Binding” of) Path for the data format of this file.

This data element is only used in the File-Binding.

Usage CMI determines the location for the Path File

AICC - CMI Guidelines for Interoperability

August-16-2004 48 CMI001 Version 4.0

Data Element Name Evaluation.Path_File
AU writes the Path file at this location prior to session termination. If this
element is not present or set to an empty string, then the Path File will not
be written

CMI Behavior After the AU session has terminated, the CMI should read and store the
contents of this file (and provide a reporting mechanism for administrative
users).

AU Behavior AU writes the Path file at this location prior to session termination. The
AU may append records to this file during different points in an AU
sessions.

File Binding
 Name Path_File
 Files & Obligations Path_File: CMI Optional, AU Optional

 Name Format “Path_File” - case insensitive
 Value Format See description for the CMIFileNameFull data type.
 Data type CMIFileNameFull
 Examples Path_File = C:\windows\path data.txt

 PATH_FILE = BB:\path.cmi

 PATH_FILE = C:\directory with spaces\file with spaces.txt

HACP Binding
 Name Not Applicable

HACP Message(s)
& Obligations

Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

2.7.6 Evaluation.Performance_File

Data Element Name Evaluation.Performance_File
Definition A fully qualified file path for the Performance file, which the AU should

construct if it is to pass Performance data back to the CMI system.

See (the “File Binding” of) Performance for the data format of this file.

This data element is only used in the File-Binding.

Usage The CMI determines the location for the Performance File. The AU writes
the Path file at this location prior to session termination. If this element is
not present or set to an empty string, then the Performance File will not be
written

CMI Behavior After the AU session has terminated, the CMI should read and store the
contents of this file (and provide a reporting mechanism for administrative
users).

AICC - CMI Guidelines for Interoperability

August-16-2004 49 CMI001 Version 4.0

Data Element Name Evaluation.Performance_File
AU Behavior AU writes the Performance file at this location prior to session termination.

The AU may append records to this file during different points in an AU’s
session.

File Binding
 Name Performance_File
 Files & Obligations Performance_File: CMI Optional, AU Optional

 Name Format “Performance_File” - case insensitive
 Value Format See description for the CMIFileNameFull data type.
 Data type CMIFileNameFull
 Examples Performance_File = C:\windows\perf data.txt

 Performance_File = BB:\perf.cmi

 Performance_File = C:\directory with spaces\file with spaces.txt

HACP Binding
 Name Not Applicable

HACP Message(s)
& Obligations

Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

AICC - CMI Guidelines for Interoperability

August-16-2004 50 CMI001 Version 4.0

2.8 Objectives
Data Element Name Objectives
Definition This element contains Information on how the student has

performed on objectives related to the AU. The performance
may be related to previous sessions in the AU, or to the student
user’s performance in other AUs (in the same course) related to
the same objectives. These objectives are only those associated
with the current launching AU, not all the objectives in the
course or curriculum.

This element is an array. Each record in this array is made up
of the following sub-elements:

Objectives.ID
Objectives.Score
Objectives.Status
Objectives.Date
Objectives.Time
Objectives.Mastery Time

Each array record sub-element is described individually in this section.

Usage Information for each individual objective is itemized as separate
array record with additional sub elements. The CMI may
provide the values for each sub element at AU session start.
These values may be determined by completion requirements in
the course structure (see Course.Elements.Completion
Requirements) or prior AU session results.

The AU may set the values of each of the provided sub element
prior to session end.

An objective may be associated with more than one AU in the
same course but only those objectives associated with an AU in
the course structure will have their data passed to that AU at run
time. An AU may set Objectives.Score and Objectives.Score
data for an objective that another AU may read and change.

Only following Objectives data elements can be transmitted from
the CMI to the AU. These elements are as follows:

Objectives.ID
Objectives.Score
Objectives.Status

The Objectives array is the only array in the communication data
model that has elements that both the CMI and the AU can
modify.

File & HACP Bindings Usage Specifics

Objectives.ID, Objectives.Score, Objectives.Status elements are
transmitted to the AU using the Startup File (File binding) or the
GetParam Message (HACP binding).

In addition (with the File and HACP bindings), these same 3

AICC - CMI Guidelines for Interoperability

August-16-2004 51 CMI001 Version 4.0

Data Element Name Objectives
data elements have 2 methods that the AU can use to transmit
this data to the CMI. They are as follows:

Reporting Method #1 – This method only allows for the
reporting of Objectives.ID, Objectives.Score, and
Objectives.Status

§ HACP Binding: PutParam
§ File Binding: Finish File

Reporting Method #2 - – This method allows for the
reporting of all sub-elements in Objectives.

§ HACP Binding: PutObjectives
§ File Binding: Objectives Status File

If an AU (with the File or HACP binding) reports this data using
both methods (and the CMI used supports both methods), then
the following rules of precedence apply:

File-Based Binding: Method #1 data takes precedence over
Method #2 data.

HACP Binding: The last HACP message posted

(PutObjectives or PutParam) in the AU
session takes precedence.

API Binding Usage Specifics

The API binding only has one method for the AU to report all of
the sub elements in Objectives to the CMI, LMSSetValue().

The CMI system is responsible for initializing all Objectives array
data elements during or prior to the AU calling LMSIntialize().

CMI Behavior Notes
AU Behavior Notes

2.8.1 Objectives. ID

Data Element Name Objectives.ID
Definition A developer defined, course-unique identifier for an objective.
Usage When an AU sets this data element, it must pass the value of Course

Elements.Developer ID associated with the objective (that is associated
with that AU) in the course structure.

When the CMI sets this data element, it must pass the value of Course
Elements.Developer ID associated with the objective (that is associated
with that AU being launched) in the course structure.

CMI Behavior Note s
AU Behavior Notes
File Binding
 Name Objective_ID

AICC - CMI Guidelines for Interoperability

August-16-2004 52 CMI001 Version 4.0

Data Element Name Objectives.ID
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Mandatory, AU Optional
Objective Status File: CMI Optional, AU Optional

 Name Format Depends on method used

Method #1: “J_ID.n” (case insensitive) where n number from “1” to
“9999” with no leading zeros.

Method #2: Not applicable
 Value Format See description of data type CMIIdentifierDevID

While the CMIIdentifierDevID data format is valid, it is recommended
that data type CMIIdentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMIIdentifierDevID.

 Data type CMIIdentifierDevID
 Examples “OBJ-Eng-Start-1”
 J_ID.1 = OBJ-Eng-Start-1
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam(response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional
PutObjectives: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.objectives.n.id”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.objectives.n.id” – case sensitive where n is the (zero-based) array

index
 Value Format See description of data type CMIIdentifierINI
 Data type CMIIdentifierINI
 Examples LMSSetValue(“cmi.objectives.2.id”, “OBJ-Eng-Start-1”)
 var objective_var = LMSGetValue(“cmi.objectives.2.id”)

2.8.2 Objectives.Score

Data Element Name Objectives.Score
Definition Indication of the score obtained by the student after each attempt to

master an objective. A maximum and minimum may accompany score. It
may have up to three sub-elements:

Raw This may be an unprocessed or processed indicator of how
the student performed with the AU’s interactions (related to
the objective) experienced.

Max This is the largest score the student could have with the AU’s

interactions (related to the objective) experienced.

AICC - CMI Guidelines for Interoperability

August-16-2004 53 CMI001 Version 4.0

Data Element Name Objectives.Score

Min This is the smallest score that the student could have

achieved with the AU’s interactions (related to the objective)
experienced.

Usage • If Raw is not accompanied by Max or Min, it may be determined and
calculated in any manner that makes sense to the program designer.

• If Raw is accompanied by Max or Min, it reflects the performance of
the learner relative to the max and min values.

• If Max accompanies Raw with no Min, Min is assumed to be “0”.
• If Min is included then Max must be included.

The value of each of the score sub-elements (in relation to one another)
must be as follows:

Objectives.Score.Max >= Objectives.Score.Raw >=
Objectives.Score.Min

The AU is responsible for setting this element and the CMI is
responsible for providing the value(s) for this element to the AU (in
subsequent AU sessions) given the following rules:

• CMI must initialize all score Objectives.Score elements to an
empty string ("")

• On subsequent launches of a given AU, The CMI must provide
the current value Objectives.Score if another AU updated it.

• The CMI must update the value of Objectives.Score returned by
the AU unless Core.Credit has a value of “no-credit” for that AU
session.

If the AU sets Objectives.Score multiple times in a session, only the final
value is recorded by the CMI (When Core.Credit has a value of “credit”).

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Score
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI CMI Optional, AU Optional
Objective Status File: CMI Optional, AU Optional

 Name Format Depends on method used

Method #1: “J_Score.n” (case insensitive) where n number from “1”
to “9999” with no leading zeros.

Method #2: Not applicable
 Value Format See description of data type CMIScoreINI
 Data type CMIScoreINI
 Examples “75,100,0”
 J_score.1 = 75,100,0
 J_score.34 = 75
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam(response): CMI Optional, AU Optional
PutParam: CMI Mandatory, AU Optional
PutObjectives: CMI Optional, AU Optional

 Name Format Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 54 CMI001 Version 4.0

Data Element Name Objectives.Score
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.objectives.n.score.raw”

“cmi.objectives.n.score.max”
“cmi.objectives.n.score.min”

 API & Obligations LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.objectives.n.score.raw” – case sensitive where n is the (zero-

based) array index
“cmi.objectives.n.score.max” – case sensitive where n is the (zero-
based) array index
“cmi.objectives.n.score.min” – case sensitive where n is the (zero-
based) array index

 Value Format
 Data type CMIDecimal (for each sub element)
 Examples LMSSetValue(“cmi.objectives.2.score.raw”, “75”)

LMSSetValue(“cmi.objectives.2.score.max”, “75”)
LMSSetValue(“cmi.objectives.2.score.min”, “75”)

 var objscoreraw = LMSGetValue(“cmi.objectives.2.score.raw”)
var objscoremax = LMSGetValue(“cmi.objectives.2.score.max”)

2.8.3 Objectives.Status

Data Element Name Objectives.Status
Definition Indication of the status of an objective. Six statuses are possible . The CMI

system determines this status based on data returned from the AU and
other factors. Six status values are possible:
• passed: A necessary number of objectives in the AU were mastered

by the student, and/or the necessary score was achieved. Student is
considered to have “completed” the objective and “passed”.

• completed: The student has visited all segments of the AU related to
the objective. The student may or may not have passed. The CMI
system may make the judgment of whether he passed based upon
the score (if one is provided).

• failed: The objective was not passed. The student experienced some
kind of assessment within the AU (specifically related to the objective)
but did not demonstrate mastery of the objective.

• incomplete : The AU was started but not finished. Th e student did not
view all the required elements in the AU related to this objective.

• browsed: The student launched the AU with a Core.Lesson Mode
value of “browse” on the initial attempt. In “browse” mode, the
student experienced one or more segments of the AU related to the
objective.

• not attempted: The student has not visited any of the segments of
the AU related to this objective.".

Usage Normally, the AU determines Objectives.Status and passes it to the CMI.
On re-entry into the AU, the CMI passes the previous status returned by
the AU. However, the CMI can change the status based on the following

AICC - CMI Guidelines for Interoperability

August-16-2004 55 CMI001 Version 4.0

Data Element Name Objectives.Status
rules:

1) If the AU is part of a course that has completion requirements or
objectives relationships in its course structure, then the CMI can
change the status depending on the rules defined. (See Course
Structure)

2) If there are no completion requirements/objectives relationships
rules defined in the course structure, then the CMI cannot change
an AU determined objective status.

3) If the CMI sets Core.Credit to “no-credit” for the AU session, the CMI
is not allowed to change/update Objectives.Status based on data
set by that AU session.

4) The CMI cannot change a previously (CMI) recorded
Objectives.Status to “not attempted”

CMI Behavior The CMI is responsible for setting the initial value to Objectives.Status
"not attempted".

AU Behavior
File Binding
 Name Status.x
 In Files Startup, Finish
 Obligation Startup: CMI Optional, Finish: AU Optional
 Name Format Depends on method used

Method #1: “J_Status.n” (case insensitive) where n number from “1” to
“9999” with no leading zeros.

Method #2: Not applicable
 Value Format One of the following vocabulary values: “passed” , “failed”, “complete”,

“incomplete”, “not attempted”, or “browsed”. All values are case
insensitive. Only the first character is significant.

 Data type CMIVocabularyINI:Status
 Examples J_Status.3 = Passed
 J_STATUS.1 = c
 “F”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam(response) : CMI Optional, AU optional
PutParam : CMI Optional, AU optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.objectives.n.status
 API & Obligations LMSGetValue() : CMI Optional, AU optional

LMSSetValue() : CMI Optional, AU optional

 Name Format “cmi.objectives.n.status” - case sensitive where n is the (zero-based)

array index.
 Value Format A specific vocabulary limited to one of the following values: “passed”,

“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”. All
values are case sensitive

 Data type CMIVocabulary:Status
 Examples var stat5 = LMSGetValue(“cmi.objectives.5.status”)

AICC - CMI Guidelines for Interoperability

August-16-2004 56 CMI001 Version 4.0

Data Element Name Objectives.Status
 LMSSetValue(“cmi.objectives.8.status”, “passed”)

2.8.4 Objectives.Date

Data Element Name Objectives.Date
Definition The calendar day on which the objective status last updated by the AU.
Usage This element is set by the AU and read by the CMI
CMI Behavior
AU Behavior
File Binding
 Name Date
 In Files Objective Status File
 Obligation Objective Status File: CMI Optional, AU optional
 Name Format Not Applicable
 Value Format See description of data type CMIDate.
 Data type CMIDate
 Examples 1997/05/20

HACP Binding
 Name Same as File Binding

In HACP
Message(s)

PutObjectives

 Obligation PutObjectives: CMI Optional, AU optional
 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name Not Applicable
 Supported API Not Applicable
 Obligation Not Applicable
 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
 Not Applicable

2.8.5 Objectives.Time

Data Element Name Objectives.Time
Definition The time of day at which the objective status was last updated by the AU.
Usage This element is set by the AU and read by the CMI
CMI Behavior
AU Behavior
File Binding
 Name Time
 In Files Objective Status File
 Obligation Objective Status File: CMI Optional, AU optional
 Name Format Not Applicable
 Value Format See description of data type CMITime
 Data type CMITime
 Examples 12:01:55

AICC - CMI Guidelines for Interoperability

August-16-2004 57 CMI001 Version 4.0

Data Element Name Objectives.Time
 12:01:55.23
HACP Binding
 Name Same as File Binding

In HACP
Message(s)

PutObjectives

 Obligation PutObjectives: CMI Optional, AU optional
 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name Not Applicable
 Supported API Not Applicable
 Obligation Not Applicable
 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable
 Not Applicable

2.8.6 Objectives.Mastery Time

Data Element Name Objectives.Mastery Time
Definition The total time spent by the student on the objective material during the

AU session.
Usage This element is set by the AU and read by the CMI
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Mastery_Time
 In Files Objective Status File
 Obligation Objective Status File: CMI Optional, AU optional
 Name Format Not Applicable
 Value Format See description of data type CMITimespan.
 Data type CMITimespan
 Examples 12:01:55
 0012:01:55.23
HACP Binding
 Name Same as File Binding

In HACP
Message(s)

PutObjectives

 Obligation PutObjectives: CMI Optional, AU optional
 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name Not Applicable
 Supported API Not Applicable
 Obligation Not Applicable
 Name Format Not Applicable
 Value Format Not Applicable

AICC - CMI Guidelines for Interoperability

August-16-2004 58 CMI001 Version 4.0

Data Element Name Objectives.Mastery Time
 Data type Not Applicable
 Examples Not Applicable
 Not Applicable

AICC - CMI Guidelines for Interoperability

August-16-2004 59 CMI001 Version 4.0

2.9 Student Data
Data Element Name Student Data
Definition A grouping for a variety of data elements.
Usage All data elements in this category are optional. (See individual

member data elements for obligations)
Membership Student Data.Attempt Number

Student Data.Tries
Student Data.Tries.Try_Score
Student Data.Tries.Try_Status
Student Data.Tries.Try_Time

Student Data.Mastery Score
Student Data.Max Time Allowed
Student Data.Time Limit Action
Student Data.Tries During Lesson
Student Data.Score.n
Student Data.Lesson_Status.n

2.9.1 Student Data.Attempt Number

Data Element Name Student Data.Attempt Number
Definition The number of previous AU sessions that student has had with the

current AU.
Usage This element is set by the CMI. The CMI must initialize this element to

“0”. For the student’s initial session with the AU, the
Student Data.Attempt Number will always be “0”.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Attempt_Number
 Files & Obligations Startup : CMI Optional, AU Optional

 Name Format “Attempt_Number” – case insensitive
 Value Format A integer number from 0 to 100 (unsigned)
 Data type CMIInteger
 Examples Attempt_Number = 0
 ATTEMPT_NUMBER = 3

HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response) : CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.student_data.attempt_number
 API & Obligations LMSGetValue() : CMI Mandatory

AICC - CMI Guidelines for Interoperability

August-16-2004 60 CMI001 Version 4.0

Data Element Name Student Data.Attempt Number

 Name Format ‘cmi.student_data.attempt_number” – case sensitive
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples var x = LMSGetValue(“cmi.student_data.attempt_number”)

2.9.2 Student Data.Tries

Data Element Name Student Data.Tries
Definition This element contains a list of attempts made by the student

user to complete the AU’s required tasks during an AU session.
These attempts may correspond to embedded test(s) or
exercise(s) in the AU.

This element is an array. Each record in this array is made up
of the following sub-elements:

Student Data.Tries.Try_Score
Student Data.Tries.Try_Status
Student Data.Tries.Try_Time

Each array record sub-element is described individually in this section.

Usage The element is set by the AU and stored by the CMI. Data
stored from previous AU sessions (in these sub-elements) are
not made available to the AU.

CMI Behavior Notes The CMI should provide a means for administrative users to report data
collected from this element.

AU Behavior Notes

2.9.2.1 Student Data.Tries.Try_Score
Data Element Name Student Data.Tries.Try_Score
Definition Indication of the score obtained by the student after each attempt to

complete the AU within the current AU session. A maximum and
minimum may accompany score. It may have up to three sub-elements:

Raw This may be an unprocessed or processed indicator of how
the student performed with the AU’s interactions experienced.

Max This is the largest score the student could have with the AU’s

interactions experienced.

Min This is the smallest score that the student could have

achieved with the AU’s interactions experienced.
Usage • If Raw is not accompanied by Max or Min, it may be determined and

calculated in any manner that makes sense to the program designer.
• If Raw is accompanied by Max or Min, it reflects the performance of

the learner relative to the max and min values.
• If Max accompanies Raw with no Min, Min is assumed to be “0”.
• If Min is included then Max must be included.

The AU is responsible for setting this element and the CMI is
responsible for storing it.

CMI Behavior Notes
AU Behavior Notes

AICC - CMI Guidelines for Interoperability

August-16-2004 61 CMI001 Version 4.0

Data Element Name Student Data.Tries.Try_Score
File Binding
 Name Try_Score
 Files & Obligations Finish: CMI Optional, AU Optional

 Name Format “Try_Score.n” (case insensitive CMI Optional, AU Optional) where n is

the array index (a number from “1” to “100” with no leading zeros).
 Value Format See description of data type CMIScoreINI
 Data type CMIScoreINI
 Examples Try_Score.1 = 75,100,0
 Try_Score.34 = 75
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_data.tries.n.score.raw”

“cmi.student_data.tries.n.score.max”
“cmi.student_data.tries.n.score.min”

 API & Obligations LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

 Name Format case sensitive where n is the (zero-based) array index

“cmi.student_data.tries.n.score.raw”
“cmi.student_data.tries.n.score.max”
“cmi.student_data.tries.n.score.min

 Value Format
 Data type CMIDecimal (for each sub element)
 Examples LMSSetValue(“cmi.student_data.tries.2.score.raw”, “75”)

LMSSetValue(“cmi.student_data.tries.2.score.max”, “75”)
LMSSetValue(“cmi.student_data.tries.2.score.min”, “75”)

2.9.2.2 Student Data.Tries.Try_Status
Data Element Name Student Data.Tries.Try_Status
Definition The status of the attempt within the AU session.
Usage Six status values are possible:

• passed: Mastery of the AU’s material was achieved during the
attempt.

• completed: The student has visited all relevant segments of the AU
during the attempt. The student may or may not have passed the
AU.

• failed: The student experienced some kind of assessment within the
AU but did not demonstrate mastery of the material presented in the
attempt.

• incomplete : The attempt in the AU material was started but not
finished. The student did not view all the required elements in the
AU to complete the attempt.

AICC - CMI Guidelines for Interoperability

August-16-2004 62 CMI001 Version 4.0

Data Element Name Student Data.Tries.Try_Status
• browsed: The student launched the AU with a Core.Lesson Mode

value of “browse” on the initial attempt. In “browse” mode, the
student experienced one or more segments of the AU related to the
attempt. (Note: this status is only possible on the initial attempt in
the first AU session)

• not attempted: The student has not visited any of the segments of
the AU related to the attempt

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Try_Status
 Files & Obligations Finish: CMI Optional, AU Optional
 Name Format “Try_Status.n” (case insensitive CMI Mandatory, AU Optional) where n

is the array index (a number from “1” to “100” with no leading zeros).
 Value Format See description of data type CMIVocabularyINI:Status
 Data type CMIVocabularyINI:Status
 Examples Try_Status.1 = passed
 Try_Status.23 = C
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_data.tries.n.status
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format case sensitive where n is the (zero-based) array index:
“cmi.student_data.tries.n.status”

 Value Format
 Data type CMIVocabulary:Status
 Examples LMSSetValue(“cmi.student_data.status”, “passed”)

LMSSetValue(“cmi.student_data.tries.2.status”, “failed”)
LMSSetValue(“cmi.student_data.tries.2.status”, “incomplete”)

2.9.2.3 Student Data.Tries.Try_Time
Data Element Name Student Data.Tries.Try_Time
Definition The time elapsed during the student user’s attempt to complete

the AU’s required tasks during the AU session.
Usage The value of this element is only the time spent for a specific “attempt” in

the AU session (not the entire AU session). An AU may have multiple
“attempts” within a given AU session.

CMI Behavior Notes
AU Behavior Notes
File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 63 CMI001 Version 4.0

Data Element Name Student Data.Tries.Try_Time
 Name Try_Time
 Files & Obligations Finish: CMI Optional, AU Optional

 Name Format “Try_Time.n” (case insensitive CMI Optional, AU Optional) where n is

the array index (a number from “1” to “100” with no leading zeros).
 Value Format See description of data type CMITimespan
 Data type CMITimespan
 Examples Try_Time.1 = 0000:10:15.01
 Try_Time.23 = 00:11:12
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_data.tries.n.time
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format case sensitive where n is the (zero-based) array index

cmi.student_data.tries.n.time

 Value Format
 Data type CMITimespan
 Examples LMSSetValue(“cmi.student_data.tries.2.time”,”00:00:30”)

LMSSetValue(“cmi.student_data.tries.2.time”,“00:01:30.45”)
LMSSetValue(“cmi.student_data.tries.2.time”,“00:02:30.01”)

2.9.3 Student Data.Mastery Score

Data Element Name Student Data.Mastery Score
Definition This element defines a score level at which an AU is considered

mastered.
Usage This element is set by the CMI. When the Core.Score.Raw returned by

an AU session is greater than or equal to the Student Data.Mastery
Score, then the student is considered to have passed, or mastered the
content. If the value of Core.Score.Raw returned is less than Student
Data.Mastery Score then the student is considered to have failed the
content.

If a value is present for both Student Data.Mastery Score and
Core.Score.Raw, the CMI must change the Core.Lesson Status to
“passed” or “failed” accordingly for that AU. (unless Core.Credit is set to
“no-credit” or completion requirements rules in the course structure have
additional mastery requirements)

If the AU does not return a value for Core.Score.Raw, then the student is

AICC - CMI Guidelines for Interoperability

August-16-2004 64 CMI001 Version 4.0

Data Element Name Student Data.Mastery Score
considered to have not performed the portion of the AU’s content that
was the scored activity and the CMI does not modify Core.Lesson Status
based on Student Data.Mastery Score.

The value for Student Data.Mastery Score is provi ded by the CMI.

CMI Behavior Notes
AU Behavior Notes Since this element is optional, it is recommended that an AU have a

default mastery score internally defined in the event that the CMI does
not provide .

File Binding
 Name Mastery_Score
 Files & Obligations Startup : CMI Optional, AU Optional

 Name Format “Mastery_Score” - case insensitive
 Value Format Empty (“”) string or decimal number. See description of data type

CMIDecimal
 Data type CMIDecimal
 Examples Mastery_Score = 75
 Mastery_Score = 75.6
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_data.mastery_score
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_data.mastery_score” - case sensitive
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples var mc = LMSGetValue(“cmi.student_data.mastery_score”)

2.9.4 Student Data.Max Time Allowed

Data Element Name Student Data.Max Time Allowed
Definition The amount of time the student is allowed to have in the current AU

session. See Student Data.Max Time Limit Action for the AU's
expected response to exceeding this time limit.

Usage This element is set by the CMI.
CMI Behavior Notes
AU Behavior Notes See Student Data.Max Time Limit Action .
File Binding
 Name Max_Time_Allowed
 Files & Obligations Startup : CMI Optional, AU Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 65 CMI001 Version 4.0

Data Element Name Student Data.Max Time Allowed

 Name Format “Max_Time_Allowed” - case insensitive
 Value Format See description of data type CMITimespan
 Data type CMITimespan
 Examples Max_Time_Allowed = 0000:10:00
 Max_Time_Allowed = 00:20:00.34
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_data.max_time_allowed
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_data.max_time_allowed” -case sensitive
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples var mc = LMSGetValue(“cmi.student_data.max_time_allowed”)

2.9.5 Student Data.Time Limit Action

Data Element Name Student Data.Max Time Limit Action
Definition Indicates to the AU what actions to perform when the Student Data.Max

Time Allowed time limit is exceeded for the AU session.
Usage There are four possible values for this data element:

• Exit, Message – The AU displays a message to the student
(indicating that the time limit was exceeded) and then exits the AU
session.

• Exit, No Message - The AU session exits without displaying a
message to the student

• Continue, Message - The AU session continues but AU displays a
message to the student (indicating that the time limit) was exceeded.

• Continue, No Message - The AU session continues without
displaying a message to the student (i.e. the AU ignores the time
limit being exceeded)

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Time_Limit_Action
 Files & Obligations Startup : CMI Optional, AU Optional

 Name Format “Max_Time_Allowed” - case insensitive
 Value Format See description of data type CMIVocabularyINI:Time Limit Action
 Data type CMIVocabularyINI:Time Limit Action

AICC - CMI Guidelines for Interoperability

August-16-2004 66 CMI001 Version 4.0

Data Element Name Student Data.Max Time Limit Action
 Examples Time_Limit_Action = Continue, Message
 Time_Limit_Action = E, n
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_data.time_limit_action
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_data.time_limit_action” - case sensitive
 Value Format See description of data type CMIVocabulary:Time Limit Action
 Data type CMIVocabulary:Time Limit Action
 Examples var mc = LMSGetValue(“cmi.student_data.time_limit_action”)

2.9.6 Student Data.Tries During Lesson

Data Element Name Student Data.Tries During Lesson
Definition The number of attempts made by the student user to complete the AU’s

required tasks during an AU session. These attempts may correspond to
embedded test(s) or exercise(s) in the AU. The value of this element
directly corresponds to the number of array records in the Student
Data.Tries.

Usage This element is set by the AU.
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Tries_During_Lesson
 Files & Obligations Finish: CMI Optional, AU Optional

 Name Format “Tries_During_Lesson” - case insensitive
 Value Format
 Data type CMIInteger
 Examples Tries_During_Lesson = 1
 TRIES_DURING_LESSON = 5
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 67 CMI001 Version 4.0

Data Element Name Student Data.Tries During Lesson
API Binding
 Name cmi.student_data.tries_during_lesson
 API & Obligations LMSSetValue(): CMI Optional, AU Optional

LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_data.tries_during_lesson -case sensitive
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples LMSSetValue(“cmi.student_data.tries_during_lesson”)

2.9.7 Student Data.Sessions Journal

Data Element Name Student Data.Session Journal
Definition This element contains score and status data from previous AU sessions.

It is intended to provide a session history so that the AU designer may
vary the current AU session presentation based on student user
performance in past sessions.

This element is an array. Each record in this array is made up
of the following sub-elements:

Student Data.Session Journal.Lesson Score
Student Data.Session Journal.Lesson Status

2.9.7.1 Student Data.Sessions Journal.Lesson Score

Data Element Name Student Data.Session Journal.Lesson Score
Definition This data element contains the value of Core.Score returned from a

previous AU session indicated by the array index.

See 2.1.10 Core.Score for a detailed description.

Usage The CMI sets the value of this element based on data returned from
prior AU sessions. It is read only to the AU. See 2.1.10 Core.Score for
more information on score usage.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name score.n
 Files & Obligations Startup:

Core.Score.Raw: CMI and AU Optional
Core.Score.Max: If Core.Score.Min exists, then CMI and AU

Mandatory, otherwise optional.
Core.Score.Min: CMI and AU Optional

 Name Format “score.n” (case insensitive) where n is a number from “1” to “9999” with

no leading zeros. The index value of “n ” corresponds directly to the
ordinal number of previous sessions (i.e. “1” is the value for the first AU
session, “2” is the second AU session, etc.)

AICC - CMI Guidelines for Interoperability

August-16-2004 68 CMI001 Version 4.0

Data Element Name Student Data.Session Journal.Lesson Score
 Value Format See 2.1.10 Core.Score
 Data type See 2.1.10 Core.Score
 Examples score.1 = 75
 score.2 = 75.6
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding

 Name cmi.student_data.attempt_records.n.score.raw
cmi.student_data.attempt_records.n.score.min
cmi.student_data.attempt_records.n.score.max

 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_data.lesson_status.n” - case sensitive where n is the (zero-

based) array index. The index value of “n ” corresponds to the ordinal
number of previous sessions minus 1. (i.e. “0” is the value for the first
AU session, “1” is the second AU session, etc.)

 Value Format See 2.1.10 Core.Score
 Data type See 2.1.10 Core.Score
 Examples session2_score_raw = LMSGetValue(“attempt_records.1.score.raw”)

session2_score_min = LMSGetValue(“attempt_records.1.score.min”)
session2_score_max = LMSGetValue(“attempt_records.1.score.max”)

2.9.7.2 Student Data.Sessions Journal.Lesson Status

Data Element Name Student Data.Session Journal.Lesson Status
Definition This data element contains the value of Core.Lesson Status returned

from an previous AU session indicated by the array index.

See 2.1.6 Core.Lesson Status for more information.

Usage The CMI sets the value of this element based on data returned from
prior AU sessions. It is read only to the AU.

See 2.1.6 Core.Lesson Status for more information on usage.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name lesson_status.n
 Files & Obligations Startup : CMI Optional, AU Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 69 CMI001 Version 4.0

Data Element Name Student Data.Session Journal.Lesson Status

 Name Format “lesson_status. n” (case insensitive) where n is a number from “1” to

“9999” with no leading zeros. The index value of “n ” corresponds
directly to the ordinal number of previous sessions (i.e. “1” is the value
for the first AU session, “2” is the second AU session, etc.)

 Value Format

 Data type
 Examples lesson_status.1 = Incomplete
 LESSON_STATUS.2 = Passed,L
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding

 Name cmi.student_data.lesson_status.n
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_data.lesson_status.n” - case sensitive where n is the (zero-

based) array index. The index value of “n ” corresponds to the ordinal
number of previous sessions minus 1. (i.e. “0” is the value for the first
AU session, “1” is the second AU session, etc.)

 Value Format See 2.1.6 Core.Lesson Status
 Data type See 2.1.6 Core.Lesson Status
 Examples var session2status = LMSGetValue(“cmi.student_data.lesson_status.1”)

AICC - CMI Guidelines for Interoperability

August-16-2004 70 CMI001 Version 4.0

2.10 Student Preference
Data Element Name Student Preference
Definition A grouping for a variety of data elements relating to preferences that a

given student user has set for a given course.
Usage All data elements in this group are set by the AU (by some user

interface in the AU presented the student user to pick the course
preferences).

For a given student, all data elements in this group are shared
with all of other AU’s in a given course. So a student may set a
preference data element (such as Student Preference.Audio) in
one AU and that preference value will persist (throughout the
course) until changed by the student in subsequent AU’s/AU
sessions.

To provide this persistence, the CMI must store/update the data
elements in this group at the end of each AU session and pass
them to any other AU in a given course (for a given student).
This data is retained for the duration of the student’s enrollment
in a course.

Some data elements in this group do not have controlled vocabularies,
so some preferences set by one AU may not “translate” among AU’s
from different designers. Regardless, the values for preferences still
persist until changed (even if some AU’s do not understand them).

All data elements in this category are optional. (See individual
member data elements for obligations).

Membership

Student Preference.Audio
Student Preference.Language
Student Preference.Lesson Type
Student Preference.Speed
Student Preference.Text
Student Preference.Text Color
Student Preference.Text Location
Student Preference.Text Size
Student Preference.Video
Student Preference.Windows

2.10.1 Student Preference.Audio

Data Element Name Student Preference.Audio
Definition This element determines the student preference for playing audio and

audio volume during AU presentations.
Usage The possible states for this element are as follows:

• On – Play audio at the indicated volume (an integer value of 1 to
100. 1 being the lowest volume, 100 being the highest)

AICC - CMI Guidelines for Interoperability

August-16-2004 71 CMI001 Version 4.0

Data Element Name Student Preference.Audio
• Off – No audio is played (an integer value of -1)
• Default – Play audio based on AU’s internal defaults (an integer

value of 0). If no value is available (or this element is not
supported) and AU should assume “0”.

CMI Behavior Notes
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Audio
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Audio” - case insensitive
 Value Format An integer value from –1 to 100. Values are as follows:

-1 : Off – No audio is played
0 : Default – Play audio based on AU’s internal defaults
1 to 100 : On - Play audio at the indicated volume. (unsigned)

 Data type CMISinteger
 Examples ; Audio is off

Audio = -1
 ; Audio is set to maximum possible volume

Audio = 100
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.audio
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.audio” - case sensitive
 Value Format Same as File Binding
 Data type CMISinteger
 Examples var mc = LMSGetValue(“cmi.student_preference.audio”)
 /* set audio off */

LMSSetValue(“cmi.student_preference.audio”,”-1”)
 /* set audio on and at half volume*/

LMSSetValue(“cmi.student_preference.audio”,”50”)

2.10.2 Student Preference.Language

Data Element Name Student Preference.Language
Definition For AU’s with multi-lingual capability, this element identifies which

AICC - CMI Guidelines for Interoperability

August-16-2004 72 CMI001 Version 4.0

Data Element Name Student Preference.Language
language should be used to deliver instruction based on the student’s
selected preference.

Usage This element can be set (by the AU) to any string that represents a
language. There is no preset vocabulary for language values. If a
Student Preference.Language value is not recognized by the AU, it
should then use its own internal default for language delivery.

Because of there is no preset vocabulary for Student
Preference.Language values, this element is AU implementation
specific. AU’s from different designers in the same course may not be
able to interpret language values.

CMI Behavior Notes
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Language
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Language” - case insensitive
 Value Format A 255 character string representing a language. (See Datatype

CMIString255INI for details)
 Data type CMIString255INI
 Examples Language = French
 Language = English
 Language = Chinese
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.language
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.language” - case sensitive
 Value Format Same as File Binding
 Data type CMIString255INI
 Examples var lang = LMSGetValue(“cmi.student_preference.language”)
 LMSSetValue(“cmi.student_preference.language”)”,”French”)

2.10.3 Student Preference.Lesson Type

Data Element Name Student Preference.Lesson Type

AICC - CMI Guidelines for Interoperability

August-16-2004 73 CMI001 Version 4.0

Data Element Name Student Preference.Lesson Type
Definition This data element specifies the (AU designer specific) “type” of AU that

made the last updates to other Student Preference data elements.

The purpose for this element is to communicate to other AU’s which
“type” of AU updated the Student Preference data elements last, since
some Student Preference data elements set in one type of AU may be
meaningless when applied to another type of AU. The reason for this
limitation is that some Student Preference data elements in this
specification are not defined with controlled vocabularies. These
(implementation specific) Student Preference data elements are as
follows:

Student Preference.Language
Student Preference.Text Color
Student Preference.Text Location
Student Preference.Text Size
Student Preference.Video
Student Preference.Windows

Usage This element is set by the AU when changing the values of any of the

following Student Preference data elements:

Student Preference.Language
Student Preference.Text Color
Student Preference.Text Location
Student Preference.Text Size
Student Preference.Video
Student Preference.Windows

The CMI passes this element to all AU’s in a course. After the value for
this element is updated by a given AU, the CMI passes the new value to
all subsequent AU’s and AU sessions for a given student in a given
course.

This value for this data element is AU designer specific.

CMI Behavior Notes
AU Behavior Notes A designer creating large numbers of AU’s should make them as

homogenous as possible with regards to use of Student Preference data
elements (i.e. use the same Student Preference.Lesson Type whenever
possible)

File Binding
 Name Lesson_Type
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Lesson_Type” - case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Lesson_Type = Airbus -A320-Adopt-PPT
 Lesson_Type = Boeing-777-Authorware-5
 Lesson_Type = NWA-Flash-Flight
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 74 CMI001 Version 4.0

Data Element Name Student Preference.Lesson Type

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.lesson_type
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.lesson_type” - case sensitive
 Value Format Same as File Binding
 Data type CMIString255INI
 Examples var Lessontype = LMSGetValue(“cmi.student_preference.lesson_type”)

 LMSSetValue(“cmi.student_preference.lesson_type”)”,” Airbus -A320-Adopt-PPT”)

2.10.4 Student Preference.Speed

Data Element Name Student Preference.Speed
Definition The student’s preferred playback speed for AU materials.
Usage The allowed values for this element is an integer number from -100 to

100 where:

• The value of “–100” is slowest playback speed. The AU plays
back at the slowest speed possible,

• The value of “0” is a “no-change status”. The AU defaults to its
normal playback speed.

• The value of “100” is the fastest playback speed. The AU plays
back at the fastest speed possible,

CMI Behavior Notes
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Speed
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Speed” - case insensitive
 Value Format An integer value from –100 to 100. Values are as follows:

-1 to -100 : Slower speeds
0 : Default – Speed based on AU’s internal defaults
1 to 100 : Faster speeds

 Data type CMISinteger
 Examples ; Speed is set to slowest possible pace

Speed = -100
 ; Speed is set to fasted possible pace

Speed = 100
HACP Binding
 Name Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 75 CMI001 Version 4.0

Data Element Name Student Preference.Speed
HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.speed
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.speed” - case sensitive
 Value Format Same as File Binding
 Data type CMISinteger
 Examples var mc = LMSGetValue(“cmi.student_preference.speed”)
 LMSSetValue(“cmi.student_preference.speed”,”-1”)
 LMSSetValue(“cmi.student_preference.speed”,”50”)

2.10.5 Student Preference.Text

Data Element Name Student Preference.Text
Definition This element identifies whether the audio narration text appears in the

AU’s presentation.
Usage This element is an integer with 3 possible values (–1, 0, and 1) where

these values have the following meaning:

-1 Is text off. Narration text is not displayed by the AU

0 Is no change to text setting, the AU uses its default value.

1 Is text on. The AU displays narration text to the student

CMI Behavior Notes
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Text
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Text” - case insensitive
 Value Format An integer with 3 possible values (–1, 0, and 1) see usage
 Data type CMISinteger
 Examples Text = -1
 Text = 1
HACP Binding
 Name Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 76 CMI001 Version 4.0

Data Element Name Student Preference.Text
HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.text
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.text” - case sensitive
 Value Format Same as File Binding
 Data type CMISinteger
 Examples var textpref = LMSGetValue(“cmi.student_preference.text”)
 LMSSetValue(“cmi.student_preference.text”,”-1”)
 LMSSetValue(“cmi.student_preference.text”,”0”)

2.10.6 Student Preference.Text Color

Data Element Name Student Preference.Text Color
Definition This element stores student preferences for text color and text

background in the AU presentation.
Usage Format of data in this element is AU implementation specific.
CMI Behavior Notes
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Text_Color
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Text_Color” - case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Text_Color = R23,B34,G465
 Text_Color =
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 77 CMI001 Version 4.0

Data Element Name Student Preference.Text Color
 Name cmi.student_preference.text_color
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.text_color” - case sensitive
 Value Format Same as File Binding
 Data type CMIString255INI
 Examples var textcolorpref = LMSGetValue(“cmi.student_preference.text_color”)
 LMSSetValue(“cmi.student_preference.text_color”,”green”)
 LMSSetValue(“cmi.student_preference.text_color”,”blue”)

2.10.7 Student Preference.Text Location

Data Element Name Student Preference.Text Location
Definition This element stores student preferences for location of narration text in

the AU presentation.
Usage Format of data in this element is AU implementation specific.
CMI Behavior Notes
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Text Location
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Text_Location” – case insensitive
 Value Format 255 Character String
 Data type CMIString255INI
 Examples Text_Location = Lower-right
 Text_Location = 123, 240
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.text_location
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.text_location” - case sensitive
 Value Format Same as File Binding
 Data type CMIString255INI
 Examples var textcolorpref = LMSGetValue(“cmi.student_preference.text_location”)

 LMSSetValue(“cmi.student_preference.text_location”,”lower-right”)

AICC - CMI Guidelines for Interoperability

August-16-2004 78 CMI001 Version 4.0

Data Element Name Student Preference.Text Location
 LMSSetValue(“cmi.student_preference.text_location”,”234,56”)

2.10.8 Student Preference.Text Size

Data Element Name Student Preference.Text Size
Definition This element stores student preferences for the size of displayed text in

the AU presentation.
Usage Format of data in this element is AU implementation specific.
CMI Behavior Notes
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Text Size
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Text_Size” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Text Size = 124%
 Text_Size = Large
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.text_size
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.text_size” - case sensitive
 Value Format Same as File Binding
 Data type CMIString255INI
 Examples var textcolorpref = LMSGetValue(“cmi.student_preference.text_size”)

 LMSSetValue(“cmi.student_preference.text_size”,”124%”)

 LMSSetValue(“cmi.student_preference.text_size”,”Large”)

2.10.9 Student Preference.Video

Data Element Name Student Preference.Text Video
Definition This element stores student preferences for display/control properties for

video presented in the AU.
Usage Format of data in this element is AU implementation specific.
CMI Behavior Notes

AICC - CMI Guidelines for Interoperability

August-16-2004 79 CMI001 Version 4.0

Data Element Name Student Preference.Text Video
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Video
 Files & Obligation Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Video” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Video = 124, 56 – controls on
 Video = normal size
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.video
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.video” - case sensitive
 Value Format Same as File Binding
 Data type CMIString255INI
 Examples var textcolorpref = LMSGetValue(“cmi.student_preference.video”)

 LMSSetValue(“cmi.student_preference.video”,”124, 56 – controls on”)

 LMSSetValue(“cmi.student_preference.video”,”normal size”)

2.10.10 Student Preference.Windows

Data Element Name Student Preference.Windows
Definition This element stores student preferences for display properties of

presentation window(s) used by the AU. This element is an array. Each
array record represents properties for a single display window. There is
only a single value per record.

Usage An AU may use multiple display windows. Format of data in this
element is AU implementation specific.

CMI Behavior Notes
AU Behavior Notes This data element is set by the AU, usually by some user interface in the

AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding
 Name Window.1

AICC - CMI Guidelines for Interoperability

August-16-2004 80 CMI001 Version 4.0

Data Element Name Student Preference.Windows
 Files & Obligations Startup: CMI Optional, AU Optional

Finish: CMI Optional, AU Optional

 Name Format “Window.n” – case insensitive where n is the array index.
 Value Format 255 Character String. Format of data is AU implementation specific.

(See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Window.2 = 124, 56 – controls on
 window.1 = normal size
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name cmi.student_preference.windows.n
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_preference.windows.n” - case sensitive where n is the

(zero-based) array index.
 Value Format Same as File Binding
 Data type CMIString255INI
 Examples var textcolorpref = LMSGetValue(“cmi.student_preference.windows.0”)

 LMSSetValue(“cmi.student_preference.widnows.2”,”124, 56 – controls on”)

 LMSSetValue(“cmi.student_preference.windows.3”,”normal size”)

AICC - CMI Guidelines for Interoperability

August-16-2004 81 CMI001 Version 4.0

2.11 Interactions
Data Element Name Interactions
Definition In this context, an “interaction” is a recognized and recordable

input from the student to the computer. All of the items in this
group are related to a recognized and recordable input from the
student. The purpose of the element is to collect detailed
information on each interaction measured in an AU session.

This element is an array. Each record in this array corresponds
to a single interaction in the current AU session. Each record is
made up of the following sub-elements:

Interactions.ID
Interactions.Objectives
Interactions.Date
Interactions.Time
Interactions.Type
Interactions.Correct Responses
Interactions.Weighting
Interactions.Student Response
Interactions.Result
Interactions.Latency

Each array record sub-element is described individually in this section

Usage The AU sets all data elements in this group. The CMI stores and
retains this data for reporting purposes.

CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes

2.11.1 Interactions.ID

Data Element Name Interactions.ID
Definition A developer defined, unique identifier for a specific “interaction” within an

AU.
Usage This element is internally determined and is set by the AU.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Interaction_ID
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Not applicable
 Value Format See data type CMIIdentifierDevID for format description.

While the CMIIdentifierDevID data format is valid, it is recommended
that data type CMIIdentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMIIdentifierDevID.

 Data type CMIIdentifierDevID
 Examples “Int-Eng-Start-1”
 “XYZ-1230-122”

AICC - CMI Guidelines for Interoperability

August-16-2004 82 CMI001 Version 4.0

Data Element Name Interactions.ID
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.id”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional
 Obligation LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional
 Name Format “cmi.interactions.n.id” – case sensitive where n is the (zero-based) array

index
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples LMSSetValue(“cmi.objectives.2.id”, “int-Eng-Start-1”)
 var inter_var = LMSGetValue(“cmi.interactions.2.id”)

2.11.2 Interactions.Objectives

Data Element Name Interactions.Objectives
Definition The identifier(s) of the objectives associated with the Interactions record.
Usage This element is internally determined and set by the AU. The objective

ID’s used must match those associated with objectives in the course
structure.

In the API binding, this element is an array and can contain multiple
objective ID’s associated with the Interactions record.
For HACP and File bindings there can only be a single objective ID in
this element.

CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Objective_ID
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Objective_ID” case insensitve
 Value Format See data type CMIIndentifierDevID for description

While the CMIIdentifierDevID data format is valid, it is recommended
that data type CMIIdentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMIIdentifierDevID.

 Data type CMIIdentifierDevID.
 Examples “Int-Eng-Start-1”
 “XYZ-1230-122”

AICC - CMI Guidelines for Interoperability

August-16-2004 83 CMI001 Version 4.0

Data Element Name Interactions.Objectives
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.id.objectives.n.id”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.interactions.n.id.objectives.n1.id”

case sensitive where n is the (zero-based) array index for the interaction
record and n1 is the sub (zero-based) array index for the objectives
associated with the interaction record,

 Value Format Same as File Binding
 Data type CMIIdentifierDevID (for each element)
 Examples LMSSetValue(“cmi.interactions.2.id.objectives.1.id”, “int-Eng-Start-1”)

 var iObj_var = LMSGetValue(“cmi.interactions.3.id.objectives.2.id”)

2.11.3 Interactions.Date

Data Element Name Interactions.Date
Definition The calendar day on which the Interactions array record was recorded

by the AU.
Usage This element is set by the AU.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Date
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Date” case insensitve
 Value Format See description of data type CMIDate
 Data type CMIDate
 Examples “1999/03/22”
 “2001/09/11”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 84 CMI001 Version 4.0

Data Element Name Interactions.Date
API Binding
 Name “cmi.interactions.n.date”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.interactions.n.date”

case sensitive where n is the (zero-based) array index for the interaction
record

 Value Format See description of data type CMIDate
 Data type CMIDate
 Examples LMSSetValue(“cmi.interactions.2.date”, “2002/05/23”)

 var iObj_var = LMSGetValue(“cmi.interactions.3.date”)

2.11.4 Interactions.Time

Data Element Name Interactions.Time
Definition The time of day on which the Interactions array record was recorded by

the AU.
Usage This element is set by the AU.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Interactions Time
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Time” case insensitve
 Value Format See description of data type CMITime
 Data type CMITime
 Examples “12:01:02”
 “13:05:56.23”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.time”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.interactions.n.time”

case sensitive where n is the (zero-based) array index for the interaction
record.

 Value Format Same as File Binding
 Data type Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 85 CMI001 Version 4.0

Data Element Name Interactions.Time
 Examples LMSSetValue(“cmi.interactions.2.time”, “12:01:03”)

 var iTime_var = LMSGetValue(“cmi.interactions.3.time”)

AICC - CMI Guidelines for Interoperability

August-16-2004 86 CMI001 Version 4.0

2.11.5 Interactions.Type

Data Element Name Interactions.Type
Definition The “type” of interaction that was recorded. The type of interaction

determines how the Interactions.Student Response and
Interactions.Correct Response will be interpreted.

Usage The AU sets this element. The seven possible values are defined.

True/False
A question with only two possible responses (true or false). There is only
one possible correct response for this type of interaction.

Multiple Choice
A question with a limited number of predefined responses from which
the student may select. Each response is numbered or lettered. One or
more responses may be correct for this type of interaction.

Fill in the Blank
A question with a simple one or few-word answer. The answer/response
is not predefined, but must be created by the student (as opposed to
selected). There is only one possible correct response for this type of
interaction.

Matching
A question with one or two sets (or lists) of items. Two or more of the
members of these sets are related. Answering the question requires
finding and matching related members in different sets (or lists). One or
more responses may be correct for this type of interaction.

Simple Performance
A performance question is in some ways similar to multiple choice and
sequencing questions. However, instead of selecting a written answer,
the student must perform a task or action. This step in the task or action
when input to the computer may have two parts. They are translated
and stored as an alpha-numeric codes or tokens. One or more
responses may be correct for this type of interaction.

Sequencing
In a sequencing question, the student is required to identify a logical
order for the members of a set or list. For instance, he or she may be
asked to place a series of events in chronological order. Or the student
may be asked to rank a group of items by the order of their importance.
One or more responses may be correct for this type of interaction.

Likert
A Likert question offers the student a group of alternatives on a
continuum. The response is generally based on the student's opinion or
attitude. Typical scales are as follows:

• FROM Strongly agree TO Strongly disagree

AICC - CMI Guidelines for Interoperability

August-16-2004 87 CMI001 Version 4.0

Data Element Name Interactions.Type
• FROM Way too much TO Way too little
• FROM Understand completely TO Do not understand at all

There is no “correct answer” for likert type interactions. There is only one
response.

Numeric
A numeric value with or without a decimal point is required in answering
the question. The correct answer may be a single number within a
range of numbers.

CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Type_Interaction
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Type_Interaction” case insensitve
 Value Format See description of data type CMIVocabularyINI:Interaction
 Data type CMIVocabularyINI:Interaction
 Examples “Likert”
 “M”
 “Fill-in”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.type”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format Case sensitive where n is the (zero-based) array index for the

Interactions record:
“cmi.interactions.n.type”

 Value Format See description of data type CMIVocabularyINI:Interaction
 Data type CMIVocabularyINI:Interaction
 Examples LMSSetValue(“cmi.interactions.2.type”, “likert”)

 var iType_var = LMSGetValue(“cmi.interactions.3.type”)

2.11.6 Interactions.Correct Responses

Data Element Name Interactions.Correct Responses
Definition All possible correct responses to the interaction. There may be more

than one correct response depending upon the interaction “type”.
Usage The AU sets this element. The format of this element is determined by

type indicated in Interactions.Type. (See Interactions Type for Type
definitions)

AICC - CMI Guidelines for Interoperability

August-16-2004 88 CMI001 Version 4.0

Data Element Name Interactions.Correct Responses
• Type Likert has no “correct response”. The element is left blank for

interactions of type “Likert”.
• The following types can have multiple possible correct responses:

Multiple Choice
Matching

• The following types can have only one possible correct response:
Fill in the Blank
Simple Performance
Sequencing
Numeric

In the API binding, this element is an array with one record for each
possible correct response. For HACP and File bindings this element is a
single value with delimiters for multiple correct responses.

CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Correct_Response
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Correct_Response” case insensitive
 Value Format See data type CMIFeedbackCSV sub types for description of correct

formats based on interaction type.
 Data type CMIFeedbackCSV
 Examples “Likert”
 “M”
 “Fill-in”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.correct_reponses.n.pattern”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format Case sensitive where n is the (zero-based) array index for the

Interactions record and n1 is the index for the correct response(s):
“cmi.interactions.n.correct_reponses.n1.pattern”

 Value Format See data type CMIFeedbackCSV sub types for description of correct
formats based on interaction type.

 Data type CMIFeedbackCSV
 Examples LMSSetValue(“cmi.interactions.2.correct_reponses.1.pattern”, “{1.b,2.c}”)

 Cor1 = LMSGetValue(“cmi.interactions.3.correct_reponses.1.pattern”)

AICC - CMI Guidelines for Interoperability

August-16-2004 89 CMI001 Version 4.0

2.11.7 Interactions.Weighting

Data Element Name Interactions.Weighting
Definition The weighted value of the interaction. The weighting is a factor, which is

used to identify the relative importance of one interaction compared to
another.

Usage The AU sets this element. If all interactions are equal in importance,
then each interaction has the same weight.

CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes An AU’s weighting of interactions may reflect their impact on the score

for an AU session. A weight of 0 indicates that the AU may not count
the interaction in the weighted final score.

File Binding
 Name Weighting
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Weighting” case insensitive
 Value Format See data type CMIDecimal.
 Data type CMIDecimal
 Examples 1
 2.5
 3
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.weighting”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format Case sensitive where n is the (zero-based) array index for the

Interactions record:
“cmi.interactions.n.weighting”

 Value Format Same as File Binding
 Data type Same as File Binding
 Examples LMSSetValue(“cmi.interactions.2.weighting”, “2”)

 Weight1 = LMSGetValue(“cmi.interactions.3. weighting”)

2.11.8 Interactions.Student Response

Data Element Name Interactions.Student Response
Definition The student user response to the interaction.
Usage The AU sets this element. The format of this element is determined by

type indicated in Interactions.Type. (See Interactions Type for Type
definitions)

CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes

AICC - CMI Guidelines for Interoperability

August-16-2004 90 CMI001 Version 4.0

Data Element Name Interactions.Student Response
File Binding
 Name Student_Response
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Student_Response” case insensitive
 Value Format See data type CMIFeedbackCSV sub types for description of correct

formats based on interaction type.
 Data type CMIFeedbackCSV
 Examples “{1.a,2.b,3.c}”
 “2.a” --
 “a”
 “This is a response to a fill-in-the-blank question”
 34
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.student_reponse”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format Case sensitive where n is the (zero-based) array index for the

Interactions record:
“cmi.interactions.n.student_reponse”

 Value Format See data type CMIFeedbackCSV sub types for description of correct
formats based on interaction type.

 Data type CMIFeedbackCSV
 Examples LMSSetValue(“cmi.interactions.2.student_reponse.1”, “{1.b,2.c}”)

 StudResp1 = LMSGetValue(“cmi.interactions.3. student_reponse”)

2.11.9 Interactions.Result

Data Element Name Interactions.Result
Definition Judgment of the acceptability of the student response in the interaction.
Usage The AU sets this element.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Result
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Result” case insensitive
 Value Format See data type CMIVocabularyINI:Result for description of data

formating.
 Data type CMIVocabularyINI:Result

AICC - CMI Guidelines for Interoperability

August-16-2004 91 CMI001 Version 4.0

Data Element Name Interactions.Result
 Examples “C”
 “wrong”
 “Unanticipated”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.result”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format Case sensitive where n is the (zero-based) array index for the

Interactions record:
“cmi.interactions.n.result”

 Value Format See data type CMIVocabularyINI:Result for description of data
formating.

 Data type CMIVocabulary:Result
 Examples LMSSetValue(“cmi.interactions.2.result”, “correct”)

 res1 = LMSGetValue(“cmi.interactions.3. result”)

2.11.10 Interactions.Latency

Data Element Name Interactions.Latency
Definition The time from the presentation of the Interaction stimulus to the

completion of the measurable response in the AU.
Usage The AU sets this element.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Latency
 Files & Obligations Interactions File: CMI Optional, AU Optional

 Name Format Field Name: “Latency” case insensitive
 Value Format See data type CMITimespan for description.
 Data type CMITimespan
 Examples “00:00:03”
 “00:01:03.50”
 “0000:03:03.1”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutInteractions: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 92 CMI001 Version 4.0

Data Element Name Interactions.Latency
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.interactions.n.latency”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format Case sensitive where n is the (zero-based) array index for the

Interactions record:
“cmi.interactions.n.latency”

 Value Format Same as File Binding
 Data type Same as File Binding
 Examples LMSSetValue(“cmi.interactions.2.latency”, “0000:45:02.22”)

 res1 = LMSGetValue(“cmi.interactions.3. latency”)

2.12 Paths
Data Element Name Paths
Definition A record of the path that the student took through an AU’s material

during an AU session.

This data element allows the AU to record the AU segments entered by
the student, the order in which the student experienced the segments,
and the time spent in each segment (during an AU session). The
number of segments in an AU is implementation dependent.

This element is an array. Each record in this array corresponds
to a single path taken in the current AU session. Each record is
made up of the following sub-elements:

Paths.Location ID
Paths.Date
Paths.Time
Paths.Status
Paths.Why Left
Paths.Time in Element

Each array record sub-element is described individually in this section

Usage The AU sets all data elements in this group.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes

2.12.1 Paths.Location ID

Data Element Name Paths.Location ID
Definition A developer defined, unique identifier for a specific location within the

AU visited by the student during an AU session.
Usage The AU sets this element.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Element_Location

AICC - CMI Guidelines for Interoperability

August-16-2004 93 CMI001 Version 4.0

Data Element Name Paths.Location ID
 Files & Obligations Path File: CMI Optional, AU Optional

 Name Format Field Name: “Element_Location” case insensitive
 Value Format See data type CMIIdentifierINI for description.
 Data type CMIIdentifierINI
 Examples “Int-Eng-Start-1”
 “XYZ-1230-122”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutPath: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.paths.n.location_id”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.paths.n.location_id” – case sensitive where n is the (zero-based)

array index
 Value Format See data type CMIIdentifierINI for description.
 Data type CMIIdentifierINI
 Examples LMSSetValue(“cmi.paths.2.location_id”, “int-Eng-Start-1”)

 var log_path = LMSGetValue(“cmi.paths.2.location_id”)

2.12.2 Paths.Date

Data Element Name Paths.Date
Definition The calendar day on which the AU segment was entered.
Usage The AU sets this element.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Path Date
 Files & Obligations Path File: CMI Optional, AU Optional

 Name Format Field Name: “Date” case insensitive
 Value Format See description of data type CMIDate
 Data type CMIDate
 Examples “1999/03/22”
 “2001/09/11”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutPath: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 94 CMI001 Version 4.0

Data Element Name Paths.Date
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.paths.n.date”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.paths.n.date”

case sensitive where n is the (zero-based) array index for the Path
record.

 Value Format See description of data type CMIIDate
 Data type CMIDate
 Examples LMSSetValue(“cmi.paths.2.date”, “2002/05/23”)

 var pdate = LMSGetValue(“cmi.paths.3.date”)

2.12.3 Paths.Time

Data Element Name Paths.Time
Definition The time of day at which the student entered the AU segment.
Usage The AU sets this element.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Path Time
 Files & Obligations Path File: CMI Optional, AU Optional

 Name Format Field Name: “Time” case insensitive
 Value Format See description of data type CMIDate
 Data type CMITime
 Examples “12:01:23.33”
 “14:05:43”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutPath: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.paths.n.time”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.paths.n.time” - case sensitive where n is the (zero-based) array

index for the Paths record.
 Value Format Same as File Binding
 Data type Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 95 CMI001 Version 4.0

Data Element Name Paths.Time
 Examples LMSSetValue(“cmi.paths.2.time”, “13:03:45.45”)

 var ptime = LMSGetValue(“cmi.paths.3.time”)

2.12.4 Paths.Status

Data Element Name Paths.Status
Definition A record of the student's performance in an AU segment each time

he/she leaves that segment during an AU session.
Usage Only the AU sets the value of Paths.Status . There are four possible

values:
• passed: The student mastered the AU segment.
• completed: The student has visited all parts of the segment
• failed: The student experienced some kind of assessment within the

AU segment but did not demonstrate mastery.
• incomplete : The AU segment was started but not finished.

.

CMI Behavior
AU Behavior
File Binding
 Name Status
 Files & Obligations Path File: CMI Optional, Finish: AU Optional

 Name Format Field Name: “Status” case insensitive
 Value Format One of the following vocabulary values: “passed” , “failed”, “complete”,

“incomplete”, “not attempted”. All values are case insensitive. Only the
first character is significant.

 Data type CMIVocabularyINI:Status
 Examples “Passed”
 “c”
 “F”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutPath : CMI Optional, AU optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name cmi.paths.n.status
 API & Obligations LMSGetValue() : CMI Optional, AU optional

LMSSetValue() : CMI Optional, AU optional

 Name Format “cmi.paths.n.status” - case sensitive where n is the (zero-based) array

index.
 Value Format A specific vocabulary limited to on of the following values: “passed”,

“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”. All
values are case sensitive

 Data type CMIVocabulary:Status
 Examples var stat5 = LMSGetValue(“cmi.paths.5.status”)

AICC - CMI Guidelines for Interoperability

August-16-2004 96 CMI001 Version 4.0

Data Element Name Paths.Status
 LMSSetValue(“cmi.paths.8.status”, “passed”)

2.12.5 Paths.Why Left

Data Element Name Paths.Why Left
Definition An indication why the student departed a segment in an AU.
Usage The AU sets this element. There are four possible values that may be

recorded:

Student selected: The student selected some AU option, which
resulted in his leaving the current AU segment. (Typically a menu, icon
or some other kind of navigation control)

Lesson directed: The logic of the AU moved a student out of the
current AU segment to some other segment in the AU.

Exit by student: A complete departure from the AU. For instance the
student may have selected to log out or exit the AU.

Directed departure: The AU forced the student out of the current
session. An example might occur when the time limit is exceeded.

CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Why_Left
 Files & Obligations Path File: CMI Optional, AU Optional

 Name Format Field Name: “Why_Left” case insensitive
 Value Format See description of data type CMIVocabularyINI:Why Left
 Data type CMIVocabularyINI:Why Left
 Examples “S”
 “exit”
 “directed departure”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutPath: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.paths.n.why_left
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.paths.n.why_left” - case sensitive where n is the (zero-based) array

index for the Paths record.
 Value Format See description of data type CMIVocabulary:Why Left
 Data type CMIVocabulary:Why Left
 Examples LMSSetValue(“cmi.paths.2.why_left”, “directed departure”)

AICC - CMI Guidelines for Interoperability

August-16-2004 97 CMI001 Version 4.0

Data Element Name Paths.Why Left
 var whyLeft = LMSGetValue(“cmi.paths.3.why_left”)

2.12.6 Paths.Time in Element

Data Element Name Paths.Time in Element
Definition The amount of time spent by the student in the AU segment.
Usage The AU sets this element.
CMI Behavior Notes The CMI stores and retains this data for reporting purposes.
AU Behavior Notes
File Binding
 Name Time_In_Element
 Files & Obligations Path File: CMI Optional, AU Optional

 Name Format Field Name: “Time_In_Element” case insensitive
 Value Format See description of data type CMIDate
 Data type CMITimespan
 Examples “12:01:23.33”
 “0014:05:43”
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutPath: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.paths.n.time_in_element”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.paths.n.time_in_element” - case sensitive where n is the (zero-

based) array index for the Paths record.
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples LMSSetValue(“cmi.paths.2.time_in_element”, “13:03:45.45”)

 var ptime = LMSGetValue(“cmi.paths.3.time_in_element”)

AICC - CMI Guidelines for Interoperability

August-16-2004 98 CMI001 Version 4.0

2.13 Student Demographics
Data Element Name Student Demographics
Definition A grouping for a variety of data elements relating to demographic

information about the student user.
Usage All data elements in this category are optional. (See individual

member data elements for obligations)
Membership Student Demographics.City

Student Demographics.Class
Student Demographics.Company
Student Demographics.Country
Student Demographics.Experience
Student Demographics.Familiar Name
Student Demographics.Instructor Name
Student Demographics.Native Language
Student Demographics.State
Student Demographics.Street Address
Student Demographics.Telephone
Student Demographics.Title
Student Demographics.Years Experience

2.13.1 Student Demographics.City

Data Element Name Student Demographics.City
Definition A Portion of student's current address that denotes the city.
Usage The CMI sets this element.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name City
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “City” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples City = Toulouse
 City = Seattle
 City = Montreal
 City = St. Louis
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 99 CMI001 Version 4.0

Data Element Name Student Demographics.City
 Name “cmi.student_demographics.city”

 API &
OBLIGATIONS

LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.city” - case sensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.city”, “Toulouse”)

 var city = LMSGetValue(“cmi.student_demographics.city”)

2.13.2 Student Demographics.Class

Data Element Name Student Demographics.Class
Definition An identifier for a predefined group of students, which are all, enrolled in

the same course (of which the current AU is a member).
Usage This grouping (class) is determined by the CMI and is implementation

dependent. The CMI sets this element. Format is implementation
dependent.

CMI Behavior Notes The CMI may have a “class” of students that is enrolled in multiple
courses.

AU Behavior Notes
File Binding
 Name Class
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Class” – case insensitive
 Value Format See description for data type CMIIdentifierINI
 Data type CMIIdentifierINI
 Examples Class = FSL-737-200-Rdn1
 Class = NWA-A330-1204
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.class”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.class” - case sensitive
 Value Format See description for data type CMIIdentifierINI
 Data type CMIIdentifierINI
 Examples LMSSetValue(“cmi.student_demographics.class”, “FSL-737-200-Rdn1”)

 var class = LMSGetValue(“cmi.student_demographics.class”)

AICC - CMI Guidelines for Interoperability

August-16-2004 100 CMI001 Version 4.0

2.13.3 Student Demographics.Company

Data Element Name Student Demographics.Company
Definition The company or organization that the student is an employee and/or

member of.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Company
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Company” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Company = Airbus
 Company = Northwest Airlines
 Company = Alteon
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.company”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.company” - case sensitive
 Value Format 255 Character String
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.company”, “Northwest Airlines”)

 var company = LMSGetValue(“cmi.student_demographics.company”)

2.13.4 Student Demographics.Country

Data Element Name Student Demographics.Country
Definition A Portion of student's current address that denotes the country.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Country
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Country” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)

AICC - CMI Guidelines for Interoperability

August-16-2004 101 CMI001 Version 4.0

Data Element Name Student Demographics.Country
 Data type CMIString255INI
 Examples Country = Canada
 Country = France
 Country = United Kingdom
 Country = United States
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.country”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.country” - case sensitive
 Value Format 255 Character String
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.country”, “France”)

 var country = LMSGetValue(“cmi.student_demographic.country”)

2.13.5 Student Demographics.Experience

Data Element Name Student Demographics.Experience
Definition Information on the student's past experience that may be used by an AU

to determine what to present, or what presentation strategies to use.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Experience
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Experience” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Experience = 737-700 Type Rating
 Experience = 5 Years Avionics 737,767
 Experience = Type Rating - A330/A340
 Experience = A/P only
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding

AICC - CMI Guidelines for Interoperability

August-16-2004 102 CMI001 Version 4.0

Data Element Name Student Demographics.Experience
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.experience”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.experience” - case sensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.experience”, “France”)

 var country = LMSGetValue(“cmi.student_demographic.experience”)

2.13.6 Student Demographics.Familiar Name

Data Element Name Student Demographics.Familiar Name
Definition In some cases, an AU may attempt to be more personal by using a

student's name in its feedback. This provides a mechanism for the CMI
system to inform the AU how it should refer to the student.

Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Familiar_Name
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Familiar_Name” – case insensitive
 Value Format 255 Character String
 Data type CMIString255INI
 Examples Familiar_Name = Skip Winger
 Familiar_Name = Chip
 Familiar_Name = Jacques
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.familiar_name”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.familiar_name”” - case sensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)

AICC - CMI Guidelines for Interoperability

August-16-2004 103 CMI001 Version 4.0

Data Element Name Student Demographics.Familiar Name
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.familiar_name”, “Jacques”)

 var country = LMSGetValue(“cmi.student_demographic.familiar_name””)

2.13.7 Student Demographics.Instructor Name

Data Element Name Student Demographics.Instructor Name
Definition Name of the instructor responsible for the student's understanding of the

material in the AU.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Instructor_Name
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Instructor_Name” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Instructor_Name = Jack Hyde
 Instructor_Name = Jean-François Schmidt
 Instructor_Name = Xavier Zeigler
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.instructor_name”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.instructor_name” - case sensitive
 Value Format 255 Character String
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.instructor_name”, “Xavier Zeigler”)

 var instrName = LMSGetValue(“cmi.student_demographic.instructor_name””)

2.13.8 Student Demographics.Native Language

Data Element Name Student Demographics.Native Language
Definition The language with which the student is most familiar. This may not be

the preferred language for the instructional delivery.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

AICC - CMI Guidelines for Interoperability

August-16-2004 104 CMI001 Version 4.0

Data Element Name Student Demographics.Native Language
information stored in the CMI.

AU Behavior Notes
File Binding
 Name Native_Language
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Native_Language” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Native_Language = French
 Native_Language = Chinese
 Native_Language = English
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.native_language”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.native_language” - case sensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.native_language”, “French”)

 var natlang = LMSGetValue(“cmi.student_demographics.native_language”)

2.13.9 Student Demographics.State

Data Element Name Student Demographics.State
Definition A Portion of student's current address that denotes the state, province,

or local region within the country.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name State
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “State” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples State = Quebec
 State = Missouri
 State = Manitoba

AICC - CMI Guidelines for Interoperability

August-16-2004 105 CMI001 Version 4.0

Data Element Name Student Demographics.State
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.state”

 API &
OBLIGATIONS

LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.state” - case sensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.state”, “Missouri”)

 var state = LMSGetValue(“cmi.student_demographic.state”)

2.13.10 Student Demographics.Street Address

Data Element Name Student Demographics.Street Address
Definition A Portion of student's current address that denotes the street address.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Street_Address
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Street_Address” – case insensitive
 Value Format 255 Character String
 Data type CMIString255INI
 Examples Street_Address = 1601 Pennsylvania Avenue
 Street_Address = 1301 SW 16th Street
 Street_Address = Manitoba
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.street_address”

AICC - CMI Guidelines for Interoperability

August-16-2004 106 CMI001 Version 4.0

Data Element Name Student Demographics.Street Address
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.street_address” - case sensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.street_address”, “Missouri”)

 var addr = LMSGetValue(“cmi.student_demographics.street_address”)

2.13.11 Student Demographics.Telephone

Data Element Name Student Demographics.Telephone
Definition The telephone number of a student. May include country codes or

extensions.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Telephone
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Telephone” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Telephone = 1-800-555-5555 ext 123
 Telephone = +44 482 663622
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.telephone”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

LMSSetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.telephone” - case sensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.telephone”, “+1-555-555-5555”)

 var tel = LMSGetValue(“cmi.student_demographics.telephone”)

2.13.12 Student Demographics.Title

Data Element Name Student Demographics.Title

AICC - CMI Guidelines for Interoperability

August-16-2004 107 CMI001 Version 4.0

Data Element Name Student Demographics.Title
Definition The job title of the student.
Usage The CMI sets this element. Format is implementation dependent.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Job_Title
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Job_Title” – case insensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples Job_Title = Pilot
 JOB_TITLE = First Officer
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.title”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.title” - case sensitive
 Value Format A 255 character string. (See Datatype CMIString255INI for details)
 Data type CMIString255INI
 Examples LMSSetValue(“cmi.student_demographics.title”, “First Officer”)

 var title = LMSGetValue(“cmi.student_demographics.title”)

2.13.13 Student Demographics.Years Experience

Data Element Name Student Demographics.Years Experience
Definition Number of years the student has performed in current or similar position.
Usage The CMI sets this element.
CMI Behavior Notes The CMI passes this data to the AU based on student user profile

information stored in the CMI.
AU Behavior Notes
File Binding
 Name Years_Experience
 Files & Obligations Startup: CMI Optional, AU Optional

 Name Format “Years_Experience” – case insensitive
 Value Format Integer value 0 or higher
 Data type CMIInteger
 Examples Years_Experience = 5
 Years_Experience = 6

AICC - CMI Guidelines for Interoperability

August-16-2004 108 CMI001 Version 4.0

Data Element Name Student Demographics.Years Experience
HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
 Same as File Binding
API Binding
 Name “cmi.student_demographics.years_experience”
 API & Obligations LMSGetValue(): CMI Optional, AU Optional

 Name Format “cmi.student_demographics.years_experience”” - case sensitive
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples LMSSetValue(“cmi.student_demographics.years_experience”, “5”)

 var yearsexp = LMSGetValue(“cmi.student_demographics.years_experience”,”)

AICC - CMI Guidelines for Interoperability

August-16-2004 109 CMI001 Version 4.0

2.14 Lesson_ID
Data Element Name .Lesson_ID
Definition The unique identifier for the Assignable Unit that the student user was

in when the comment was written. This is unique to, and inherent in
each AU. See Course Elements.Developer ID (section 3.4.2).

Usage The value for this element must set to the same value as the AU’s
Developer_ID (in the course structure). See Course
Elements.Developer ID (section 3.4.2).

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Lesson_ID
 Files & Obligations Comments File : CMI Optional, AU Optional

Interactions File :CMI Optional, AU Optional
Objectives Status File : CMI Optional, AU Optional
Path File : CMI Optional, AU Optional

 Name Format Not Applicable
 Value Format See data type CMIIdentifierDevID for format description.

While the CMIIdentifierDevID data format is valid, it is recommended
that data type CMIIdentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMIIdentifierDevID.

 Data type CMIIdentifierDevID
 Examples “{E8128C30-6BF8-11cf-96FC-0020AFED9A65}”

HACP Binding
 Name Same as File Binding

HACP Message(s)
& Obligations

PutComments : CMI Optional, AU Optional
PutInteractions : CMI Optional, AU Optional
PutObjectives : CMI Optional, AU Optional
PutPath: CMI Optional, AU Optional

 Name Format Same as File Binding
 Value Format Same as File Binding
 Data type Same as File Binding
 Examples Same as File Binding
API Binding
 Name Not Applicable
 API & Obligations Not Applicable

 Name Format Not Applicable
 Value Format Not Applicable
 Data type Not Applicable
 Examples Not Applicable

AICC - CMI Guidelines for Interoperability

August-16-2004 110 CMI001 Version 4.0

3.0 Course Structure Data Model

This data model contains all of the information covered by this specification to describe a course (that may be
passed from one CMI system to another thru a course import/export process).

Data in this data model is also stored internally by the CMI system and is used by the CMI in determining some
values of the communication data model elements sent to AU’s in the course at runtime. The communication data
model is described in chapter 2.0. A CMI system may have the ability to internally store and use some of the data
elements in the course structure data model without necessarily supporting them for import/export.

There is only one binding for this data model (described in chapter 8.0).

The sequencing (of Assignable Units) within a course (using this data model) is described in chapter 4.0. The table
below lists all of the data elements in this data model.

Table Legend:
Name Indicates the name of the data element.
Definition Indicates where in this document a definition of the data element is found.
Mult Indicates whether the element has only a single value – SV - or may have multiple

values - MV.
Obligation This indicates whether the data element is required or optional

Name Definition Mult Obligation

Course Section 3.1 SV Mandatory
Course.Creator Section 3.1.1 SV Mandatory
Course.ID Section 3.1.2 SV Mandatory
Course.System Section 3.1.3 SV Mandatory
Course.Title Section 3.1.4 SV Mandatory
Course.Level Section 3.1.5 SV Mandatory
Course.Max Fields CST Section 3.1.6 SV Mandatory
Course.Max Fields ORT Section 3.1.7 SV Optional
Course.Total AUs Section 3.1.8 SV Mandatory
Course.Total Blocks Section 3.1.9 SV Mandatory
Course.Total Objectives Section 3.1.10 SV Optional
Course.Total Complex Objectives Section 3.1.11 SV Optional
Course.Version Section 3.1.12 SV Mandatory
Course Behavior Section 3.2 SV Mandatory
Course Behavior. Max Normal Section 3.2.1 SV Mandatory
Course Description Section 3.3 SV Mandatory
Course Elements Section 3.4 MV Mandatory
Course Elements.System ID Section 3.4.1 SV Mandatory
Course Elements.Developer ID Section 3.4.2 SV Mandatory
Course Elements.Title Section 3.4.3 SV Mandatory
Course Elements. Description Section 3.4.4 SV Mandatory
Course Elements.Type Section 3.4.5 SV Mandatory
Course Elements.Command Line Section 3.4.6 SV Mandatory
Course Elements.File Name Section 3.4.7 SV Mandatory
Course Elements.Mastery Score Section 3.4.8 SV Optional
Course Elements.Max Score Section 3.4.9 MV Optional
Course Elements.Max Time Allowed Section 3.4.10 SV Optional
Course Elements.Time Limit Action Section 3.4.11 SV Optional
Course Elements.Development System Section 3.4.12 SV Mandatory
Course Elements.Launch Data Section 3.4.13 SV Mandatory
Course Elements.Web Launch Parameters Section 3.4.14 MV Mandatory
Course Elements.AU Password Section 3.4.15 SV Optional
Course Elements.Members Section 3.4.16 MV Mandatory
Course Elements.Members.System ID Section 3.4.16.1 SV Mandatory
Course Elements.Prerequisite Section 3.4.17 SV Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 111 CMI001 Version 4.0

Name Definition Mult Obligation
Course Elements.Completions Section 3.4.18 MV Optional
Course Elements.Completions.Requirement Section 3.4.18.1 SV Optional
Course Elements.Completions.Status if True Section 3.4.18.2 SV Optional
Course Elements.Completions.Next AU if True Section 3.4.18.3 SV Optional
Course Elements.Completions.Goto after Next Section 3.4.18.4 SV Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 112 CMI001 Version 4.0

Each element in this data model is described in tables in the following sections. The fields for each of these tables
are as follows:

Data Element Name
The data elements in this model are arranged hierarchically (in a “parent/child” relationship). Hierarchy levels are
delimited by period (“.”)s in the data element name. Any item to the right of the period delimiter is the “child” of
proceeding item (e.g. in “Course.ID”, “Course.ID” is a child of “Course” and “Course” is the parent of
“Course.ID”).

Definition
A description of the data element and what it is used for.

Usage
Usage rules for data element.

CMI Behavior Notes
A description of the expected or recommended CMI behavior when using the data element. (This field augments
“Usage)

AU Behavior Notes
A description of the expected or recommended CMI behavior when using the data element. (This field augments
“Usage)

File Binding: Name
Data element name when used when referring to this element when used in the file binding.

File Binding: In File(s)
Files in which the data element is contained.

File Binding: Obligation
Whether or not the data element is required for a valid course structure (in the file binding).

File Binding: Name Format
Formatting for the Name of the data element written in the files.

File Binding: Value Format
This field adds additional explanation for valid values that a field may have (in addition to the definition that data
type provides).

File Binding: Data Type
Each data element binding is assigned a “data type”. The data type defines the size of data element and the valid
ranges of values. See section 10. Data Types

File Binding: Examples
Examples of how data element is represented in files.

AICC - CMI Guidelines for Interoperability

August-16-2004 113 CMI001 Version 4.0

3.1 Course
Data Element Name Course
Definition This category of data elements contains information that applies to the

course as a whole. Some of this data is designed to help in processing
the more detailed information on other data elements in the course and
how they are ordered.

Usage See individual member data elements for obligations
Membership Course.Creator

Course.ID
Course.System
Course.Title
Course.Level
Course.Max Fields CST
Course.Max Fields ORT
Course.Total Aus
Course.Total Blocks
Course.Total Objectives
Course.Total Complex Objectives
Course.Version

3.1.1 Course.Creator

Data Element Name Creator
Definition The name of the organization or individual that authored of the course
Usage
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Course_Creator
 In Files Course
 Obligation Mandatory
 Name Format “Course_Creator” Case insensitive.
 Value Format
 Data type CMIString255INI
 Examples Course_Creator = “Boeing Commercial Airplane Group,

Customer Services”
 Course_Creator = Airbus
 Course_Creator = John, Bill, Bob, Anne, Sally

3.1.2 Course.ID

Data Element Name ID
Definition A unique identifier for the course.
Usage The value of this element is provided by CMI to AU’s at runtime via the

Evaluation.Course_ID communication data element.
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Course_ID
 In Files Course
 Obligation Mandatory

AICC - CMI Guidelines for Interoperability

August-16-2004 114 CMI001 Version 4.0

Data Element Name ID
 Name Format “Course_ID” Case insensitive.
 Value Format See data type CMIIndentifierDevID for description

While the CMIIdentifierDevID data format is valid, it is recommended
that data type CMIIdentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMIIdentifierDevID.

 Data type CMIIndentifierDevID
 Examples A320-Trans-NWA-2
 737-700-EZY -2002-Rec

3.1.3 Course.System

Data Element Name System
Definition The name the predominant authoring system used to create the course.
Usage Values are not intended for runtime (machine) interpretation. Provided

for informational purposes only.
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Course_System
 In Files Course
 Obligation Mandatory
 Name Format “Course_System” Case insensitive.
 Value Format 255 character string
 Data type CMIString255INI
 Examples Course_System=Authorware
 Course_system = PCD3 authoring
 Course_System=WISE
 Course_System=VACBI

3.1.4 Course.Title

Data Element Name Title
Definition A descriptive name (or title) given to the course.
Usage Used by the CMI to display (or report) course title to students and

administrative users
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Course_Title
 In Files Course
 Obligation Mandatory
 Name Format “Course_Title” Case insensitive.
 Value Format 255 character string
 Data type CMIString255INI
 Examples 747 Flight Crew Training
 Maintaining 747 Avionics
 Maintaining A310 Hydraulic Systems

AICC - CMI Guidelines for Interoperability

August-16-2004 115 CMI001 Version 4.0

3.1.5 Course.Level

Data Element Name Level
Definition Complexity level of the file's description of the course. There are three

levels of complexity numbered 1 through 3. One is the simplest to 3,
the most complex. Level 3 is divided into two parts, referred to as 3a
and 3b. (See section 3.5 for a detailed description of each level of
course complexity)

Usage The CMI system may or may not support all levels. Support for level 1 is
a minimum requirement. Possible values for this element are as
follows:

1 Support Level 1 course interchange. May support some features
from higher levels as well.

2 Supports all features of level 1 and level 2. May support some
features from level 3.

3 Supports all level 1, 2, 3a, and 3b features of course
interchange.

3a Supports level 1, 2, and 3a interchange.
3b Supports level 1, 2, and 3b interchange

CMI Behavior Notes If the complexity level of a specific course is not supported, the CMI
system may provide a warning to the user.

AU Behavior Notes
File Binding
 Name Level
 In Files Course
 Obligation Mandatory
 Name Format “Level” Case insensitive.
 Value Format Alphanumeric characters. Allowed vocabulary is “1”, ”2”, ”3”, ”3a”, or

“3b”
 Data type CMILevel
 Examples Level = 3
 level=2
 level = 3a

3.1.6 Course.Max Fields CST

Data Element Name Max Fields CST
Definition Identifies the maximum number of fields that are in the course structure

table/file (xxxxxxxx.CST file).
Usage Some CMI systems may use this information to help process the

information in the Course Structure Table.
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Max_Fields_CST
 In Files Course
 Obligation Mandatory
 Name Format “Max_Fields_CST” Case insensitive.
 Value Format Numeric characters.
 Data type CMIinteger
 Examples Max_fields_CST=12

; There is at least one block (or the course itself) that
; has 11 members.

 Max_Fields_CST = 9

AICC - CMI Guidelines for Interoperability

August-16-2004 116 CMI001 Version 4.0

3.1.7 Course.Max Fields ORT

Data Element Name Max Fields ORT
Definition Identifies the maximum number of fi elds that are in the objectives

relationships table (any.ORT file).
Usage Some CMI systems may use this information to help process the

information in the Objectives Relationship Table.
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Max_Fields_ORT
 In Files Course
 Obligation Optional
 Name Format “Max_Fields_ORT” Case insensitive.
 Value Format Numeric characters.
 Data type CMIinteger
 Examples Max_fields_ORT=12

; There is at least one element in the left-most column that
; has 11 members.

 Max_Fields_ORT = 9

3.1.8 Course.Total AUs

Data Element Name Total AUs
Definition The total number of unique assignable units in the course.
Usage This information may aid in the processing of information in the course

structure.
CMI Behavior Notes This number does not necessarily represent the largest digit used to

identify an AU. AU identifiers do not have to be consecutive. If there
are 5 AUs in a course (Total_AUs=5), they could be identified as A.001,
A.0021, A2, A3, A.505.

AU Behavior Notes
File Binding
 Name Total_AUs
 In Files Course
 Obligation Mandatory
 Name Format “Total_AUs” Case insensitive.
 Value Format Numeric characters.
 Data type CMIInteger
 Examples Total_AUs = 3

; There are three assignable units in the course.
 Total_AUs= 84

3.1.9 Course.Total Blocks

Data Element Name Total Blocks
Definition The total number of unique blocks in the course.
Usage This information may aid in the processing of information in the course

structure.
CMI Behavior Notes As with Course.Total AUs this number does not have to be equal to the

largest number used in Block System Identifiers.

AICC - CMI Guidelines for Interoperability

August-16-2004 117 CMI001 Version 4.0

Data Element Name Total Blocks
AU Behavior Notes
File Binding
 Name Total_Blocks
 In Files Course
 Obligation Mandatory
 Name Format “Total_Blocks” Case insensitive.
 Value Format Numeric characters.
 Data type CMIInteger
 Examples Total_Blocks = 3

; There are three blocks in the course.
 Total_blocks= 84

3.1.10 Course.Total Objectives

Data Element Name Total Objectives
Definition The total number of unique objectives in the course. This number

includes both complex and simple objectives.
Usage This information may aid in the processing of information in the course

structure.
CMI Behavior Notes As with Course.Total AUs, this number does not have to be equal to the

largest number used in Objectives System Identifiers.
AU Behavior Notes
File Binding
 Name Total_Objectives
 In Files Course
 Obligation Optional
 Name Format “Total_Objectives” Case insensitive.
 Value Format Numeric characters.
 Data type CMIInteger
 Examples Total_Objectives = 3

; There are three objectives in the course.
 Total_objectives= 84

3.1.11 Course.Total Complex Objectives

Data Element Name Total Complex Objectives
Definition The total number of unique complex objectives in the course. A

complex objective is an objective that has one or more Course
Elements.Members.

Usage This information may aid in the processing of information in the course
structure.

CMI Behavior Notes As with Course.Total AUs this number does not have to be equal to the
largest number used in Objectives System Identifiers.

AU Behavior Notes
File Binding
 Name Total_Complex_Obj
 In Files Course
 Obligation Optional
 Name Format “Total_Complex_Obj” Case insensitive.
 Value Format Numeric characters.
 Data type CMIinteger
 Examples Total_Complex_Obj = 3

AICC - CMI Guidelines for Interoperability

August-16-2004 118 CMI001 Version 4.0

Data Element Name Total Complex Objectives
; There are three complex objectives in the course.

 Total_complex_obj= 84

3.1.12 Course.Version

Data Element Name Version
Definition Identifies the CMI001 - CMI Guidelines for Interoperability document

(i.e. THIS specification’s) revision number on which the Course
Structure format is based.

Usage This element may aid in the processing of information in the
accompanying files. Version number vocabulary is restricted to
published versions of this document.

CMI Behavior Notes CMI systems may use different course structure import/export logic
based on the value of this element.

AU Behavior Notes
File Binding
 Name Version
 In Files Course
 Obligation Mandatory
 Name Format “Version” Case insensitive.
 Value Format See data type CMIVersionNumber for the vocabulary of allowed values.
 Data type CMIVersionNumber
 Examples Version = 2.0
 version=3.5

3.2 Course Behavior
Data Element Name Course Behavior
Definition This category of data elements is used to define keywords that can be

used to affect the behavior of the CMI system for the course.
Usage
Membership Course Behavior.Max Normal

3.2.1 Course Behavior.Max Normal

Data Element Name Max Normal
Definition The maximum number of assignable units that may be taken for credit

simultaneously. This value indicates how many AU’s launched with
credit = credit are allowed to be incomplete.

Usage When this number is exceeded, subsequent launches of AU’s in the
course must be with a Core.Credit value of “no-credit”. Further, the
default CMI behavior is to launch all subsequent AU’s with a
Core.Lesson Mode value of “Browse”.

Valid values are 1 to 99 inclusive. If no number is indicated, 1 is
assumed. If a number greater than 99 is indicated, then 99 is assumed.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Max_Normal
 In Files Course
 Obligation Mandatory

AICC - CMI Guidelines for Interoperability

August-16-2004 119 CMI001 Version 4.0

Data Element Name Max Normal
 Name Format “Max_Normal” Case insensitive
 Value Format A single integer number. Valid values are 1 to 99 inclusive.
 Data type CMIinteger
 Examples Max_Normal=1

; only 1 AU being taken for credit can be incomplete.
 Max_Normal = 5

3.3 Course Description
Data Element Name Course Description
Definition This is a textual description of the contents of the course. It may

contain the purpose, or the scope, or a summary of the course
objectives.

Usage May be used to display/report to a student or an administrative user the
instructional description and purpose of the course.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Course_Description
 In Files Course
 Obligation Mandatory
 Name Format “[Course_Description]” Case insensitive
 Value Format Freeform text. Carriage returns are implied (explicitly) at the end of

each line.
 Data type CMIString4096INI
 Examples ; The value of Course description starts with “This”

; and ends with “change.”
;

[COURSE_DESCRIPTION]

This course explains the new JAA rules for RVSM and
the procedures affected by this change.

[Vendor Specific Group]

3.4 Course Elements
Data Element Name Course Elements
Definition A Course Element is an Assignable Unit, a Block, or an Objective. This

category has information about individual Course Elements and
indicates how those Course Elements are organized and how they
relate to one another.

Additionally, this category includes information that allows the
sequencing of the Course Elements using prerequisites and completion
requirements for each when necessary.

Usage Describe features of individual Course Elements, and how they are
organized and sequenced in a course.

CMI Behavior Notes The order of the data elements implies (but does not force) an order for
presentation to the student.

AICC - CMI Guidelines for Interoperability

August-16-2004 120 CMI001 Version 4.0

Data Element Name Course Elements

Should a developer wish to specify a course sequence, Course
Elements.Prerequisite and Course Elements.Completion Requirement
are used to specify the order.

The first element in this category is always a Block and always has the
System ID of “root”.

AU Behavior Notes
File Binding
 Name N/A
 In Files Information in this category can be found in the following files:

Assignable Unit, Descriptor, Course Structure, Objectives
Relationships, Prerequisites, Completion Requirements

 Obligation
 Name Format N/A
 Value Format
 Data type
 Examples

3.4.1 Course Elements.System ID

Data Element Name System ID
Definition A system assigned, unique, Course Element identifier. The exporting

system for the course structure generates this unique identifier for every
Course Element.

Usage The value for Course Elements.System ID must be unique for each
individual Course Element within a given course structure.

One Course Element in a course structure has a Course
Elements.System ID value of “root” (this is a special ID for the root
membership of Course Elements in the course structure’s hierarchy).
All other values for Course Elements.System ID have the following
naming convention: A letter and a number. The letter identifies the
category of Course Element. Possible Course Element categories are
as follows:

A -- Assignable Unit
B – Block
J -- Objective or complex objective

The number is a simple integer to distinguish each unique item in a
category. Lead/trailing zeros are significant (“B011” and “B11” are
different identifiers)

CMI Behavior Notes The numbers assigned by the CMI system do not have to be sequential.
AU Behavior Notes
File Binding
 Name System_ID
 In Files Assignable Unit, Descriptor, Course Structure, Objectives

Relationships, Prerequisites, and Completion Requirements.
 Obligation Mandatory
 Name Format System ID’s appear in all of the course structure files and have the

following field (header) names:

AICC - CMI Guidelines for Interoperability

August-16-2004 121 CMI001 Version 4.0

Data Element Name System ID
• “System_ID” in Assignable Unit and Descriptor Files.
• “Block” in Course Structure File.
• “Course_Element” in Objectives Relationships File.
• “Member” in Course Structure and Objectives Relationships

Files.
• “Structure_Element” in Prerequisites File.
• “Structure_Element” in Completion Requirements File.
• Case insensitive in all files.

 Value Format A valid system identifier (as defined in data type CMISIdentifier) or the
value “root”. Case insensitive in all files.

 Data type CMISIdentifier
 Examples A15
 B1005
 J015

3.4.2 Course Elements.Developer ID

Data Element Name Developer ID
Definition A developer assigned (unique) identifier for a Course Element.
Usage For each Course Element, the value of Course Elements.Developer ID

must be unique within a course structure.

At AU launch time, the CMI system passes the value of this item to the
AU via Evaluation.Lesson ID or Objectives.ID communication data (See
sections 2.7.2 Evaluation.Lesson ID and 2.8.1 Objectives.ID).

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Developer_ID
 In Files Descriptor
 Obligation Mandatory
 Name Format “Developer_ID” Case insensitive.
 Value Format See description for data type CMIIndentifierDevID

While the CMIIdentifierDevID data format is valid, it is recommended
that data type CMIIdentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMIIdentifierDevID.

 Data type CMIIndentifierDevID
 Examples APU-747-003
 A320_415_ELEC_001
 A320_415_ELEC_002

3.4.3 Course Elements.Title

Data Element Name Title
Definition Commonly used name for an assignable unit, block, objective, or

complex objective.
Usage May be used by CMI system in menu screens where students can see

or select an assignable unit or block, or see the status of an objective.
CMI Behavior Notes

AICC - CMI Guidelines for Interoperability

August-16-2004 122 CMI001 Version 4.0

Data Element Name Title
AU Behavior Notes
File Binding
 Name Title
 In Files Descriptor
 Obligation Mandatory
 Name Format “Title” Case insensitive.
 Value Format Alphanumeric plus hyphens and underscores spaces and commas.
 Data type CMIString255CSV
 Examples "Auxiliary Power Unit, Part 1"
 "Auxiliary Power Unit Start"
 "Electrical Power, Part 3"

3.4.4 Course Elements.Description

Data Element Name Description
Definition This is a textual description of the assignable unit, objective, etc. It may

contain the purpose, or the scope, or a summary of the element.
Usage Designed for human reading and understanding (display/reporting) only,

not intended for other purposes.
CMI Behavior Notes The CMI system may provide a visual interface to display Course

Elements.Description to a student or administrative user on request.
AU Behavior Notes
File Binding
 Name Description
 In Files Descriptor
 Obligation Mandatory
 Name Format “Title” Case insensitive.
 Value Format Free form textual description. Carriage returns are specially encoded

and are translated prior to display/reporting. The string “<CR>” delimits
embedded carriage returns.

 Data type CMIString4096CSV
 Examples “This course teaches the following: <CR> 1. How to Locate the exits

<CR>2. How to locate the emergency equipment<CR> 3. How use the
cabin intercom system”

3.4.5 Course Elements.Type

Data Element Name Type
Definition Assignable units (AU’s) may be categorized. Course Elements.Type

identifies a developer-defined category of assignable unit. These are
determined by the designer/developer of the assignable unit.

Usage Course Elements.Type may be related to the ability of an assignable
unit to respond to student preferences. Assignable units with the same
value of Course Elements.Type may be able to process all student
preferences created and passed from other AU’s of the same “type”.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Type
 In Files Assignable Unit

AICC - CMI Guidelines for Interoperability

August-16-2004 123 CMI001 Version 4.0

Data Element Name Type
 Obligation Optional
 Name Format “Type” Case insensitive.
 Value Format Alphanumeric. Not case sensitive. May contain spaces and commas.
 Data type CMIString255CSV
 Examples BTI Lesson
 A320 Unit
 M1684_ZX

3.4.6 Course Elements.Command Line

Data Element Name Command Line
Definition The string of characters needed to successfully launch an executable

program in the Microsoft Windows operating environment. Environment
variables may be embedded in the command line

Usage This information is only used by Assignable Units. It is not appropriate
for Blocks and Objectives.

Specific file and directory locations that may be contained within this
data element are installation specific. It is the course structure creator’s
responsibility to provide either an automated installation process or a
written manual procedure for modifying this data element in the AU file
to reflect the actual installed location of the AU's in a course.

This field is left blank for web-based AU’s.

CMI Behavior Note s
AU Behavior Notes
File Binding
 Name Command Line
 In Files Assignable Unit
 Obligation Mandatory
 Name Format “Command_Line” Case insensitive.
 Value Format Alphanumeric. Not case sensitive. May contain spaces.
 Data type CMIString255CSV
 Examples “APU /UAL/MN”
 “ELEC3 –nuv3”
 “%lesloc%ELEC3 –nuv3”

3.4.7 Course Elements.File Name

Data Element Name File Name
Definition The fully qualified name of the file containing the most critical content of

the assignable unit (an assignable unit may require several files). The
purpose of this field is to enable the CMI to locate the primary file
needed to launch an AU.

Usage The filename indicates either a fully qualified windows file path or a fully
qualified URL (depending upon whether the course is file-based or web
based) For web-based courses, this URL indicates the “point of entry”
for web-based AU’s.

The AU filename location is installation specific. It is the course
structure creator’s responsibility to provide either an automated

AICC - CMI Guidelines for Interoperability

August-16-2004 124 CMI001 Version 4.0

Data Element Name File Name
installation process or a written manual procedure for modifying the
filename values in the AU file to reflect the actual installed location of
the AU's in a course.

This field is not used for non-AU Course Elements (i.e. Blocks and
Objectives).

CMI Behavior Notes This element may be used to reference a non-conforming AU that does
not communicate with the CMI. In this case, the method of determining
communication data elements (like Core.Lesson Status) for the AU
sessions by the CMI is undefined and implementation dependent.

AU Behavior Notes
File Binding
 Name File_Name
 In Files Assignable Unit
 Obligation Mandatory
 Name Format “File_Name” Case insensitive.
 Value Format A URL for web-based (in web-based courses) or a Windows File name

(in file-base courses).
 Data type CMIurl or CMIFileNameFull
 Examples “C:\somedir\somefile.exe”
 “E:\afile.A4P”
 “http://somehost.com/dir1/dir2/index.html”

3.4.8 Course Elements.Mastery Score

Data Element Name Mastery Score
Definition See section 2.9.3 Student Data.Mastery Score.
Usage The value of Course Elements.Mastery Score is passed to the AU via

Student Data.Mastery Score by the CMI at AU launch time.
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Mastery_Score
 In Files Assignable Unit
 Obligation Optional
 Name Format “Mastery_Score” Case insensitive.
 Value Format Decimal number.
 Data type CMIDecimal
 Examples .85
 85
 16

3.4.9 Course Elements.Max Score

Data Element Name Max Score
Definition The maximum possible value for Core.Score.Raw that the assignable

unit will return. The AU designer determines this value.
Usage If an AU does not support a Core.Score.Max to the CMI, Course

Elements.Max Score allows the CMI system to compute a percentage
from the Core.Score.Raw value provided by the AU.

CMI Behavior Notes

AICC - CMI Guidelines for Interoperability

August-16-2004 125 CMI001 Version 4.0

Data Element Name Max Score
AU Behavior Notes
File Binding
 Name Max_Score
 In Files Assignable Unit
 Obligation Optional
 Name Format “Max_Score” Case insensitive.
 Value Format Decimal number.
 Data type CMIDecimal
 Examples 1
 1.0
 23

3.4.10 Course Elements.Max Time Allowed

Data Element Name Max Time Allowed
Definition See section 2.9.3 Student Data.Max Time Allowed.
Usage The value of Course Elements.Max Time Allowed is passed to the AU

by CMI via Student Data.Max Time Allowed at AU launch time.
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Max_Time_Allowed
 In Files Assignable Unit
 Obligation Optional
 Name Format “Max_Time_Allowed” Case insensitive.
 Value Format See description of data type CMITimeSpan
 Data type CMITimeSpan
 Examples 00:25:00
 01:12:00
 00:00:24.3

3.4.11 Course Elements.Time Limit Action

Data Element Name Time Limit Action
Definition See section 2.9.4 Student Data.Time Limit Action
Usage The value of Course Elements.Time Limit Action is passed to the AU by

CMI via Student Data.Time Limit Action at AU launch time.
CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Time_Limit_Action
 In Files Assignable Unit
 Obligation Optional
 Name Format “Time_Limit_Action” Case insensitive.
 Value Format See CMIVocabularyINI:Time Limit Action for description
 Data type CMIVocabularyINI:Time Limit Action
 Examples “E,N”
 “exit,no_message”
 “c,m”

AICC - CMI Guidelines for Interoperability

August-16-2004 126 CMI001 Version 4.0

3.4.12 Course Elements.Development System

Data Element Name System
Definition Authoring system (or development tools) used to create the assignable

unit. This information is provided by the course developer
Usage For display/reporting (informational) purposes only. Not intended for

machine interpretation.
CMI Behavior Notes The CMI administrative user interface may display this information in a

course editing or reporting functions.
AU Behavior Notes
File Binding
 Name System Vendor
 In Files Assignable Unit
 Obligation Optional
 Name Format “System_Vendor” Case insensitive.
 Value Format Authoring system and version number.
 Data type CMIString255CSV
 Examples Authorware 3.2
 Tool Book 4.0
 VACBI 2.0

3.4.13 Assignable Unit.Launch Data

Data Element Name Launch Data
Definition See section 2.3 Launch Data.
Usage The value of Assignable Unit.Launch Data is passed by the CMI to the

AU via Launch Data at AU launch time.

Prior to passing this value to Launch Data, carriage return tokens (in the
form of the string “<CR>” - case insensitive) in Assignable Unit.Launch
Data are translated to carriage return/line feeds.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Core Vendor
 In Files Assignable Unit
 Obligation Mandatory
 Name Format “Core_Vendor” Case insensitive.
 Value Format Carriage returns are encoded with “<CR>” (case insensitive) tokens.
 Data type CMIString4096CSV
 Examples “Testmode=on <CR>configuration=PW168<CR>audience=FO”
 “Testmode/on, configuration/PW168, audience/FO”

3.4.14 Course Elements.Web Launch Parameters

Data Element Name Web Launch Parameters
Definition AU-specific launch parameters for web-based AU’s. Additional

name/value parameters that must be appended to the “URL Command
line” (See sections 6.3) at AU launch time.

Usage This data is appended to the "query" portion (after the “?” separator) of
the “URL command line”. (See sections 6.3)

CMI Behavior Notes
AU Behavior Notes

AICC - CMI Guidelines for Interoperability

August-16-2004 127 CMI001 Version 4.0

Data Element Name Web Launch Parameters
File Binding
 Name Web Launch Parameters
 In Files Assignable Unit
 Obligation Mandatory
 Name Format “Web_Launch” Case insensitive.
 Value Format URL-encoded name/value pairs. Formatted in the following manner:

1. Values of the parameters are communicated in (name/value pair)
form “<parameter Name> = <Parameter value>”.

2. The “name/value pairs” are separated by ampersands (“&”).
3. The name/value pairs can be in any order.
4. Parameter names are not case sensitive.
5. Parameter values may be case sensitive.

All parameters must be URL-encoded (see section 6.4.1.1)
 Data type CMIurlEncNVPairList
 Examples Vparam1=1234&Vparam2=Question%3F&vparam3=more+stuff

3.4.15 Course Elements.AU Password

Data Element Name AU Password
Definition A string of characters sent to the CMI system that enables the CMI

system to authenticate an assignable unit. This authentication is
independent of any user authentication that the CMI system uses.

Usage The password value is AU developer-defined and is sent with HACP
request messages (see section 6.4.2), so that the CMI system can
authenticate the AU making the request. The CMI compares the value
of this element with the value passed by the AU in HACP request
messages.

If an AU has an AU Password defined in the course and the
corresponding AU does not issue the proper password value in HACP
request message, then the CMI must issue a HACP response message
(see section 6.4.3), with the appropriate error number (see section
6.4.8).

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Web Launch Parameters
 In Files Assignable Unit
 Obligation Optional
 Name Format “AU_Password” Case insensitive.
 Value Format See datatype in section 9.0.
 Data type CMIString255CSV
 Examples Trust!one
 TheSecretWord

3.4.16 Course Elements.Members

Data Element Name Members

AICC - CMI Guidelines for Interoperability

August-16-2004 128 CMI001 Version 4.0

Data Element Name Members
Definition A list (array) of “members” of a Course Element in the course structure

data model hierarchy. The course structure data model follows a
hierarchy where Course Elements may contain other Course Elements
in the following manner:

• Blocks may contain Assignable Units and Objectives.
• Objectives may contain Blocks and Assignable Units.
• Assignable Units may contain Objectives.

Each record in this array is composed of the following sub-elements:

• Course Elements.Members.System ID

Usage The values for each item in this list are the Course.System ID values of
other Course Elements. (i.e. the children referenced as being contained
in this Course Element)

CMI Behavior Notes When there are no explicit completion requirements for a Course
Element, the status of the Course Element is determined by the status
of its members and default rules (see section 4.2.1).

AU Behavior Notes

3.4.16.1 Course Elements.Members.System ID
Data Element Name System ID
Definition The System ID (See Course Elements.System ID) identifying the

Course Element that is contained in (is a member of) the current
Course Element.

Usage The value of this field is set to the value of Course Elements.System ID
for the Course Element that is a member of the current Course Element

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Member
 In Files Course Structure and Objectives Relationships
 Obligation Mandatory
 Name Format “Member” Case insensitive.
 Value Format A valid system identifier. Case insensitive in all files. See description of

data type CMISIdentifier
 Data type CMISIdentifier
 Examples B15
 A023
 J53

3.4.17 Course Elements.Prerequisite

Data Element Name Course Elements.Prerequisite
Definition A logical (Boolean) expression indicates what other Course Elements

must be complete before a student will be allowed to enter the given
(Block or Assignable Unit) Course Element. If the expression evaluates
true, the “prerequisites” are met, and the student user may enter the
(Block or Assignable Unit) Course Element

Usage Course Elements.Prerequisite does not apply to Objectives Course
Elements. (Although the logical expression can reference Objectives).

There shall be no more than one Course Elements.Prerequisite for

AICC - CMI Guidelines for Interoperability

August-16-2004 129 CMI001 Version 4.0

Data Element Name Course Elements.Prerequisite
each Block or Assignable Unit Course Element. The prerequisites for a
Block Course Element apply to all the members of that Block.

Prerequisites are additive. Individual members of a Course Element
may have prerequisites in addition to the parent’s prerequisites that
must be met before a student may enter them.

All logical expressions are Boolean (i.e. are evaluated to either true or
false). Rules for interpreting logical expressions are described in 4.3.4
Logical Expressions

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Prerequisite
 In Files Prerequisites File
 Obligation Optional
 Name Format “Prerequisite” case insensitive.
 Value Format Logical expression as described in Chapter 9.
 Data type CMILogic
 Examples A5&A6
 (A004 | A003 | A002) & B3
 3*{A1,A2,A3,A4,(B3|B4)}

3.4.18 Course Elements.Completions

Data Element Name Course Elements.Completions
Definition An array of data elements that define how to achieve a specific status

for a Course Element, and what to do after that status is achieved.
Used to force a student to follow a course sequence depending on
performance in other Course Elements

Each record in this array is made up of the following sub-elements:

Course Elements.Completions.Requirement
Course Elements.Completions.Status if True
Course Elements.Completions.Next AU if True
Course Elements.Completions.Goto after Next\

Usage There may be more than one Course Elements.Completions record for
each Course Element. There may be a record for each possible status
that may be achieved in a Course Element.

Completions are evaluated in the order in which they appear. The first
Course Elements.Completions record to evaluate true determines
status of the Course Element and actions of the CMI system.

CMI Behavior Notes
AU Behavior Notes

AICC - CMI Guidelines for Interoperability

August-16-2004 130 CMI001 Version 4.0

3.4.18.1 Course Elements.Completions.Requirement

Data Element Name Course Elements.Completions.Requirement
Definition A logical (Boolean) expression indicating what conditions must be met

before the status of a course element is modified to match the
associated value of Course Elements.Completions.Status_If_True and
any Course Elements.Completions.Next AU if True is launched by the
CMI.

Usage CMI system verifies that the logical expression in this field is true before
setting the course element’s status to the value in the associated
Course Elements.Completions.Status if True. Also, if the expression is
true then Course Elements.Completions.Next AU if True and Course
Elements.Completions.Goto after Next are used to direct the student to
the specified AUs.

If the logical statement in Course Elements.Completions.Requirement
does not evaluate to true then the course element’s Core.Lesson Status
is not changed by the current completion rule and Course
Elements.Completions.Next AU if True is ignored along with Course
Elements.Completions.Goto after Next.
All logical expressions are Boolean (i.e. are evaluated to either true or
false). Rules for interpreting logical expressions are described in 4.3.4
Logical Expressions

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Requirement
 In Files Completion Requirements File
 Obligation Optional
 Name Format “Requirement” case insensitive.
 Value Format Logical expression as described in Chapter 9.
 Data type CMILogic
 Examples A5&A6
 (A004 | A003 | A002) & B3
 3*{A1,A2,A3,A4,(B3|B4)}

3.4.18.2 Course Elements.Completions.Status if True

Data Element Name Course Elements.Completions.Status if True
Definition The new status value that the Course Element is set to if the logical

expression in Course Elements.Completions.Requirement evaluates as
true.

Usage When the logical expression in
Course Elements.Completions.Requirement evaluates as true, the
following things are done by the CMI:

1. The status of the Course Element is set to the value of Course

Elements.Completions.Status if True.

2. If the Course Element is an AU, the value of Core.Lesson Status

will be set to the value of Course Elements.Completions.Status if
True for that AU at launch time.

AICC - CMI Guidelines for Interoperability

August-16-2004 131 CMI001 Version 4.0

Data Element Name Course Elements.Completions.Status if True
If this data element is left empty, then the status of the Course Element
is computed by the “default status setting behaviors”. The default
status setting behaviors are as follows:

1. AU Course Element - If the course element is an AU, either the

value returned by the AU in Core.Lesson Status will be used or the
CMI will determine a status based on Core.Lesson Score and
Student Data.Mastery Score rules.(See Student Data.Mastery Score)

2. Block or Objective Course Element – If the course element is a

Block or an Objective, then status is determined by the status of all
the course elements listed in Course Elements.Completions-
.Requirement. If all of these evaluate to “complete”, then the course
element’s status evaluates to “complete” otherwise the course
element in question is “incomplete”.

CMI Behavior Notes
AU Behavior Notes
File Binding
 Name Result
 In Files Completion Requirements File
 Obligation Optional
 Name Format “Result” case insensitive.
 Value Format See description for data type CMIVocabularyINI:Status
 Data type CMIVocabularyINI:Status
 Examples Passed
 N
 F

3.4.18.3 Course Elements.Completions.Next AU if True

Data Element Name Course Elements.Completions.Next AU if True
Definition Identifier of the student’s next assignable unit if the logical expression in

Course Elements.Completions.Requirement evaluates true.
Usage Force a student to follow a sequence (of AU’s) without seeing any

options. Link two or more assignable units together seamlessly.
CMI Behavior Notes When this data element exists, the next AU shall be launched

automatically without allowing the student to see any CMI menu
screens.

The AU launch shall take place regardless of prerequisites for the Next
AU.

AU Behavior Notes
File Binding
 Name Next
 In Files Completion Requirements File
 Obligation Optional
 Name Format “Next” case insensitive.
 Value Format See description of data type CMISIdentifier
 Data type CMISIdentifier
 Examples A15
 A023
 A002

AICC - CMI Guidelines for Interoperability

August-16-2004 132 CMI001 Version 4.0

3.4.18.4 Course Elements.Completions.Goto after Next

Data Element Name Course Elements.Completions.Goto after Next
Definition Identifier of the student’s assignable unit after finishing “Course

elements.Next AU if True”.
Usage Force a student to return to the original assignable unit (Course

Elements.ID) after a remedial unit.

Force a sequence of 3 assignable units.

CMI Behavior Notes When this data element exists, the Goto after Next AU shall be
launched automatically without allowing the student to see any CMI
menu screens.

The launch shall take place regardless of the prerequisites for the “Goto
after Next” AU.

AU Behavior Notes
File Binding
 Name Return
 In Files Completion Requirements File
 Obligation Optional
 Name Format “Return” case insensitive.
 Value Format System ID for an Assignable Unit.
 Data type CMISIdentifier
 Examples A15
 A023
 A002

AICC - CMI Guidelines for Interoperability

August-16-2004 133 CMI001 Version 4.0

3.5 Levels of Complexity
This specification defines 5 levels of complexity in describing a course structure. This section describes each course
level. Each level is a grouping of course structure functionality (support of course data model elements). The
course levels defined in this specification are as follows:

Level 1
This is the simplest level. It describes the contents of the course, assignable units. It also defines the course
structure in terms of assignable units and blocks. It allows the construction of a course hierarchy. The order in
which the student may go through the course is only implied with the structure. This description cannot force any
order on the student user.

Includes all data elements defined as Mandatory. May include additional data elements defined as level 2, 3a, or 3b.
(See section 3.5.1 for data elements included in this level)

Level 2
This level of complexity adds a possible single prerequisite for each structure element -- an assignable unit or a block.
The evaluation of each prerequisite – true or false – is done by default. The order in which the student moves through
the course can be affected by these prerequisites (see Course Elements.Prequisite).

This level also introduces the ability to identify simple completion requirements. This means a structural element’s
completion status can affect another element. This concept enables (among other things) the use of separate
assignable units as pre-tests. Thus the completion of one assignable unit (such as a pre-test) can result in the “Pass”
status of another unit (such as an instructional lesson).

Includes all information (data elements) defined as Level 1 and 2. May include additional data elements defined as
level 3a or 3b. (See section 3.5.1 for data elements included in this level)

Level 3a
Level 3a adds to level 2 the ability to define complex prerequisites and complex completion requirements. Logical
expressions (see section 4.2.3) may be used to describe these requirements. Completion requirements may be used
to force assignable unit sequences without breaks between each.

Includes all information (data elements) defined as level 1, 2, and 3a. May include additional data elements defined
as level 3b. (See section 3.5.1 for data elements included in this level)

Level 3b
Level 3b adds the description and use of objectives to the course description and sequencing information. It
includes the description of the relationship of objectives to the course structural elements.

Includes all information (data elements) defined as level 1, 2, and 3b. May include additional data elements and
features defined as level 3a. (See section 3.5.1 for data elements included in this level)

Level 3
Includes all information and features defined as level 1, 2, 3a, and 3b. Supporting 3a and 3b allows the use of
complex prerequisites and completions with objectives. (See section 3.5.1 for data elements included in this level)

AICC - CMI Guidelines for Interoperability

August-16-2004 134 CMI001 Version 4.0

3.5.1 Course Level Mapping

The table below depicts the mapping of course levels to course data elements. The “Course level” column depicts at
which level a data element is added (See notes below for exceptions). Most levels are additive - see section 3.5 for
a description of each level.

Course Structure Data Element Section Course
Level Notes

Course 3.1 1
Course.Creator 3.1.1 1
Course.ID 3.1.2 1
Course.System 3.1.3 1
Course.Title 3.1.4 1
Course.Level 3.1.5 1
Course.Max Fields CST 3.1.6 1
Course.Max Fields ORT 3.1.7 3b
Course.Total Aus 3.1.8 1
Course.Total Blocks 3.1.9 1
Course.Total Objectives 3.1.10 3b
Course.Total Complex Objectives 3.1.11 3b
Course.Version 3.1.12 1
Course Behavior 3.2 1
Course Behavior. Max Normal 3.2.1 1
Course Description 3.3 1
Course Elements 3.4 1
Course Elements.System ID 3.4.1 1
Course Elements.Developer ID 3.4.2 1
Course Elements.Title 3.4.3 1
Course Elements. Description 3.4.4 2
Course Elements.Type 3.4.5 2
Course Elements.Command Line 3.4.6 1
Course Elements.File Name 3.4.7 1
Course Elements.Mastery Score 3.4.8 2
Course Elements.Max Score 3.4.9 2
Course Elements.Max Time Allowed 3.4.10 2
Course Elements.Time Limit Action 3.4.11 2
Course Elements.Development System 3.4.12 2
Course Elements.Launch Data 3.4.13 1
Course Elements.Web Launch Parameters 3.4.14 1
Course Elements.AU Password 3.4.15 2
Course Elements.Members 3.4.16 1
Course Elements.Members.System ID 3.4.16.1 1
Course Elements.Prerequisite 3.4.17 2, 3b #1
Course Elements.Completions 3.4.18 2
Course Elements.Completions.Requirement 3.4.18.1 2, 3a, 3b #2
Course Elements.Completions.Status if True 3.4.18.2 2
Course Elements.Completions.Next AU if True 3.4.18.3 2
Course Elements.Completions.Goto after Next 3.4.18.4 2

Notes

Course Elements.Prerequisite (Note #1)
Level 3b - Complex logic statements with objective references shall be supported.

Course Elements.Completions.Requirement (Note #2)
Level 2 - Only support for simple completion requirements is required.
Level 3a - Logic statements to define completion requirements shall be supported (see chapter 4.0).
Level 3b - Complex logic statements with objective references shall be supported. (see chapter 4.0).

AICC - CMI Guidelines for Interoperability

August-16-2004 135 CMI001 Version 4.0

Block

Block

Block

4.0 Assignable Unit Sequencing within a Course
The course structure data model (see chapter 3.0) provides information on the sequencing of the assignable units in
the course. This is not intended to limit the sequencing options of any CMI system. It does provide a description of
sequencing (in a course structure definition) that can exported for use in other conforming CMI systems (that
support the data elements used). This chapter provides further information on the usage of course data elements (in
Chapter 3.0) for assignable unit sequencing in a course. There is only one binding for the course data model (the file
binding - see chapter 8.0) all examples in this chapter use this binding.

4.1 Structure
Behavior of a course is based on how it is structured. This specification assumes there is a known world of course
components, called Course Elements. There are three kinds of Course Elements:

1. Assignable Units: represented graphically as a parallelogram (shown below)
2. Blocks: represented graphically as rectangles (shown below)
3. Objectives: represented graphically as ovals (shown below)

If a component can be selected and launched by a CMI, it is called an Assignable Unit (AU).

Assignable Unit, Block and Objective

Every Course Element has a unique identifier assigned by the CMI system. This identifier is called the "system
identifier" and is only unique for a given course. See Course Elements.System ID for a description of system
identifiers.

AU's can be grouped into blocks. Blocks in turn, can be grouped into other blocks, and so forth This ability to
group AU’s and Blocks offers the ability to organize a course into logical sections or units.

Blocks and AU’s

Objectives can be associated with Assignable Units and Blocks. Objectives can be associated with a single AU or
block, or with many.

Assignable
Unit

Block

Objective

AICC - CMI Guidelines for Interoperability

August-16-2004 136 CMI001 Version 4.0

In the illustration below, one objective is associated with two assignable units. This means that the status of the
objective depends upon the status of the two assignable units with which it is associated.

The way this relationship would appear in an Objectives Relationships File is shown here.
Course_Element, Member, Member
…
J20, A21, A22

In the illustration below, there are three objectives covered in a single assignable unit.

The way this relationship would appear in an Objectives Relationships File is shown here.
Course_Element, Member, Member, Member
…
A30, J18, J25, J37

A30

J25

J37

J18

AICC - CMI Guidelines for Interoperability

August-16-2004 137 CMI001 Version 4.0

In the illustration below, one objective (J10) is related to a block, several assignable units, and other objectives.
Exactly how the objective is related is unclear from the illustration. However, the Course Description data model
allows explicit relations to be identified.

The way this relationship would appear in an Objectives Relationships File is shown here.
Course_Element, Member, Member, Member
J10, B18, A23, J41
B18, A15, A16, A17
A17, J31
A24, J41

A course is therefore made up of blocks, assignable units, and objectives.

J10

B18
A15

A16
A15 J31

A17

A23

A15 J41

A24

AICC - CMI Guidelines for Interoperability

August-16-2004 138 CMI001 Version 4.0

While course structure is a tool for organizing learning content, it does not provide a lot of sequencing information.
For instance, the course in the illustration below could begin with any of the AU's.

Figure 4.1-1 Course with Members Identified

The AICC course structure is described in the data model. It can also be described in a table. By default, the
implied sequence of the elements in the course is from top to bottom in the data model, and from left to right and top
to bottom of the table. If a more complex sequence is desired, sequencing rules must be used.

Course Structure Example:
“Block”,”Member”,”Member”,”Member”
ROOT,B1,B2,A6,A7,A8
B1,A1,A2,A3
B2,A4,A5

Course

 A6
A7

A8

A1
A2

A3 A5

A4

B1 B2
J4

J18

AICC - CMI Guidelines for Interoperability

August-16-2004 139 CMI001 Version 4.0

4.2 Sequencing
The sequencing with in course structure is primarily defined by the following items:

• Prerequisites . Prerequisites are requirements that must be satisfied by a student before entering a new AU
or Block. Prerequisites are defined in terms of completion statuses of AU's, Blocks, and Objectives. This
is the main tool for sequencing decisions of the CMI.

• Completion Requirements . Completion Requirements refers to what is required in order to consider a

Block or AU finished. More specifically, what is required to obtain a given status of a Course Element
(AU, Block, or Objective).

Requirements for Sequencing

4.2.1 Course Element Status
The status of course elements is used in determining prerequisites and completion requirements. The status of a
course element can be one of the following:

• passed
• failed
• completed
• incomplete
• browsed
• not attempted

The status can be defined explicitly, or be calculated by default. The status of an assignable unit is normally
determined by the AU and reported to the CMI system via Core.Lesson_Status. The default status of a block is
complete when all of its members are complete. It is passed when all of its members are passed. It is complete
when some of its members are passed and the rest are complete. It is incomplete as long as a single member is not
passed or complete. The default status of an objective is determined the same way. The objective is incomplete as
long as a single member is not passed or complete.

Assignable
Unit

Prerequisites Completion
Requirements

Prerequisites

Objective Completion
Requirements

Block Completion

Requirements

AICC - CMI Guidelines for Interoperability

August-16-2004 140 CMI001 Version 4.0

Course Element Status Member Status
Passed All passed
Completed All completed
Completed One or more passed, the rest completed
Failed One or more failed
Incomplete One or more Incomplete
Incomplete One but not all Not Attempted
Browsed All members Browsed
Not Attempted All members Not Attempted

Default Status for Blocks

4.2.2 Data Model Sequencing Elements

The following table lists all of the data model elements that are related to defining sequencing in a course structure. .

Data Elements Section
Course Elements.System_ID 3.4.1
Course Elements.Members 3.4.15
Course Elements.Prerequisite 3.4.16
Course Elements.Completions 3.4.17
Course Elements.Completions.Requirement 3.4.17.1
Course Elements.Completions.Status if True 3.4.17.2
Course Elements.Completions.Next AU if True 3.4.17.3
Course Elements.Completions.Goto after Next 3.4.17.4

Data Elements Related to Sequencing

4.2.3 Logical Expressions
Some course sequencing depends upon “logical expressions”. This section describes the logical expressions that
may be used in the AICC data model for Course Interchange.

A logical expression is a list of one or more Course Elements.System_ID’s combined with logical operators (see
section 4.3.3.1). Logical expressions are Boolean (evaluated to either true or false) statements. The values of
Course Elements.Completions.Requirement (see section 3.4.16) and Course Elements.Prerequisite (see
section 3.4.17.1) are logical expressions. A logical expression containing only a single Course
Elements.System_ID is a “simple logical expression”. A logical expression containing one or more logical
operators is a “complex logical expression”.

Each Course Elements.System_ID listed in a logical expression is evaluated to either true or false depending
upon the status (see section 4.3.1) of its associated course element. The table below shows how statuses are
mapped to true or false by “default” (i.e. the absence of a Course Elements.Completions.Requirement for the
given course element listed in the logical expression):

Course Element’s Status Evaluates to
passed True

completed True
failed False

incomplete False
browsed False

not attempted False

Logical operators are used to form complex logical expressions . The table below defines the allowed logical
operators for complex logical expressions.

AICC - CMI Guidelines for Interoperability

August-16-2004 141 CMI001 Version 4.0

Operator Symbol Definition
and & All elements separated by an “&” (ampersand) must be complete (i.e. true) for the

expression to be evaluated as complete.
A34 & A36 & A38

Assignable units number 34, 36, and 38 must all be completed or passed (i.e. “true”) for
the group to be considered complete.

or | If any of the elements separated by an | are “true” the expression is considered true.
A34=P | A36=P | A38=P

If any one of the Assignable Units, 34, 36, or 38, are passed then the expression is
considered True.

not ~ An operator that returns false if the following element or expression evaluates true. It
returns true if the following element or expression evaluates as false.

~A35
This expression is false if Assignable Unit 35 is Passed or Completed. This expression is
true if AU 35 is Incomplete, Not Attempted, Failed, or Browsed.

equals = Used in a logical statement in the following manner: <Course Element>=<status value>

Evaluates to true when a course element (on the left side of the sign) has the same
status value (see section 4.3.3) as the one indicated on the right side of the equals sign.
For example:

A35=P

If assignable unit A35’s status is passed, then the statement evaluates to true otherwise it
is false.

group or set { } A list of Course Elements separated by commas and surrounded by curly brackets -- { }.
A set differs from a block, in that the set is defined only for purposes of the describing
prerequisites or completion requirements. A set has no effect on the structure of the
course. For example:

{A34, A36, A37, A39}

Assignable units 34, 36, 37, and 39 are part of a set.
separator for
set members

, The comma is used to separate the members of a set. Each member of the set can
be evaluated as a Boolean element – true or false.

For example:

{A34, A36, A37, A39}

Assignable units 34, 36, 37, and 39 are each separated by a comma in this set.
complete X

number out of
a set

X*{ } X is an integer number. This operator means that X or more members of the set
that follows must be evaluated as true for the entire set to be evaluated true.

 “3*{A34, A36, A37, A39}”
Any three or more of the following units – 34, 36, 37, 39 -- must be Passed or Completed
before the expression can be evaluated as true.

evaluate first () The expression inside the parenthesis () must be evaluated before combining its
results with other parts of the logical statement. Parentheses may be nested.

 “A34 & A35 | A36”
In this expression, completing A36 all by itself enables an evaluation of true.

“A34 & (A35 | A36)”
Adding parentheses makes it necessary to complete at least two units (A36 all by itself is
no longer enough) to evaluate the expression as true.

Operator Precedence
Logical operators within are logical expression are evaluated in a specific order. The order of precedence is defined
in the table below

Operator Order of
Precedence

= 1
() 2
*{ } 3
~ 4
& 5
| 6

Examples:

AICC - CMI Guidelines for Interoperability

August-16-2004 142 CMI001 Version 4.0

Example 1
A18

If this AU System Id appears in a logic statement, it evaluates as true if the course element A18 status is passed or
completed.

Example 2

A18=P
If this expression appears in a logic statement, it evaluates as true only if the AU status is passed.

Example 3
A18=browsed

This expression evaluates as true only if the AU has a status of browsed.

Example 4
A23 & A28
Evaluates true if Both AU 23 and AU 28 have a status of passed or completed.

Example 5
(A23=p | A23=c) & (A28=p | A28=c)
Evaluates exactly the same as example 4.

Example 6
3*{A23, A25, A26, A28, A29}
Evaluates as true if three or more of the five members of the set of assignable units has a status of passed or
completed.

Example 7
3*(A23=p, A25=p, A26=p, A28=p, A29=p}
Evaluates as true if three or more of the five members of the set of assignable units has a status of passed. A
completed AU now evaluates as false.

Example 8
~A15
Evaluates as false with a status of passed or completed. Evaluates as true with a status of incomplete, not attempted,
browsed, or failed.

Example 9
~(A31=F)
Evaluates as true if A31 has a status of passed, browsed, not attempted, completed, or incomplete. Evaluates false if
A31 is failed.

AICC - CMI Guidelines for Interoperability

August-16-2004 143 CMI001 Version 4.0

4.3 Completion Requirements
Completion requirements fall into two categories, simple and complex. Simple requirements contain only a single
course element system identifier or simple logical expression (e.g. “A002”) as the value for Course
Elements.Completions.Requirement. Complex requirements contain a complex logical expression (e.g.
“A003&A004”) in the Course Elements.Completions.Requirement.

Seamless Linking of Assignable Units

In the figure above, the linking of AU number 7 and 8 is shown. The Course Elements.Completions.Requirement is
stated as a single assignable unit. When the status of the AU is not made explicit with an equals sign (=), the AU
evaluates as true whenever its status is Passed or Completed. In this case, the Status if True of the AU reporting
back to the CMI with a status of Passed or Completed, is that the CMI assigns a status of Passed. The Next AU if
True data element indicates that as soon as A7 achieves a status of passed, the CMI will automatically launch A8.
When A8 is passed, the student will return to the course menu.

A Completion Requirements File would include the following lines.
Structure_Element, Requirement, Result, Next, Return
A7, A7=Passed | A7=Completed, Passed, A8

In the Completion Requirements File, the record for A8 is totally superfluous, because the default behavior is to
return to the CMI anytime that a student leaves a AU for any reason.

Figure 4.3-1 More Seamless Linking

Now assume that there is a remedial AU called “A17”. If the student fails A7, he should immediately begin the
remedial AU. After the student passes A17, he should then move seamlessly into A8.

A7 A8
Passed Passed

Return to
CMI

Return to
CMI

A7 A8 Passed Passed

A17
(Remediation)

Failed Passed

AICC - CMI Guidelines for Interoperability

August-16-2004 144 CMI001 Version 4.0

Lines in the Completion Requirements File would include the following
Structure_Element, Requirement, Result, Next, Return
A7, A7=Failed, Failed, A17,
A7, A7=Passed, Passed, A8,
A17, A17=Passed, Passed, A8,

What happens if the student fails A17? There is no defined "next" for this status, so the student would return to the
CMI, which is the default behavior. What the CMI does after the student fails the remedial AU is not defined here.
In fact, what the CMI does upon student failure of the remedial AU may not be defined in any of the sequencing
rules accompanying the course..

4.3.1 Complex Completion Requirements

Complex requirements are those with a complex logical expression (see section 4.3.3). Complex logical expressions
are useful in defining when a block is complete. Assume there is a block, B4, with four assignable units, A14, A15,
A16, and A17.

A Typical Block

By default, B4 is considered passed when all of its members are passed. This is defined explicitly in the file
fragments below.

AICC Completion Requirements File fragment.
Structure_Element, Requirement, Result, Next, Return
B4, A14=P & A15=P & A16=P & A17=P,Passed,,

By adding an additional line to the Completion Requirements file, the default for completed can also be explicitly
expressed.
Structure_Element, Requirement, Result, Next, Return
B4,A14=P & A15=P & A16=P & A17=P,Passed,,
B4,(A14=P | A14=C)&(A15=P | A15=C)&(A16=P | A16=C)&(A17=P | A17=C), C,,

The computer shall evaluate Completion Requirements in the order in which they appear in the file. Consequently,
the two completion requirements together express the default behaviors for Passed and Completed.

When a Course Element appears without an equal sign in the requirement field, it is evaluated as true when its status
is Passed or Completed.

B4

A14

A15

A16

A17

Passed?

AICC - CMI Guidelines for Interoperability

August-16-2004 145 CMI001 Version 4.0

4.3.2 Completion Requirements - Rules of Execution
The following section lists the CMI requirements for the execution of complete requirements rules associated with a
course structure. The order of completion requirements rule execution and when completion requirements rule
execution occurs are described.

The CMI requirements for Completion Requirements (rules) execution are as follows:

1. Each record in the Completion Requirements (CMP) table defines a completion requirement rule for a
course element.

2. A course element may have multiple rules (records) associated with it.

3. CMP rules for a course element override the default rules for status setting behavior.

4. CMP rules are order dependent. The order in which each rule appears in the CMP table must be preserved

by the CMI. The CMP table rules must be evaluated in that order by the CMI.

5. A CMP rule "fires" (updates a course element’s status and/or automatically launches an AU) when its
associated REQUIREMENTS field expression evaluates to "true".

6. The CMP rules are evaluated in a "single-pass" from the beginning of the table. There is no recursion of

rules (evaluation of the current rule does not trigger evaluation of any rules associated with the course
elements in the REQUIREMENTS expression for the current rule). The rules evaluation “pass” will
continue to the end of the CMP table (unless an AU is automatically launched).

7. CMP rules are evaluated when a student launched AU exits or when a NEXT AU or a NEXT/RETURN

AU sequence terminates. If a rule “fires” and results in the automatic launch of a NEXT AU, followed by a
RETURN AU. Then the CMP rules are evaluated after the RETURN AU exits (NOT when the NEXT AU
exits)

8. If no NEXT/RETURN sequence is invoked during a "pass", the CMP rules will continue to be evaluated

until the end of CMP records are reached. The CMP rules will not be evaluated again until another AU is
launched (by the student) and terminated.

9. If a CMP rule automatically launches an AU or a sequence of two AU’s, rule evaluation is halted until the

associated AU(s) have been sequentially launched and terminated. When the automatically launched
AU(s) have terminated, rule evaluation will restart from the beginning of the CMP table.

10. If a course element does have multiple rules (records) associated with it, only the first one to evaluate to

"true" is allowed to “fire” during a "pass". All subsequent rules for the same course element are ignored
during the remainder of the rules evaluation “pass”.

11. When evaluating the "Requirement" field to determine if a rule fires, the current status of all referenced

course elements are to be used. Status changes due to rules that fired earlier in the same "pass" through the
CMP rules are included in rule evaluation of subsequent rules. (i.e. status changes caused by rule 1 “firing”
will affect rule 3 if rule 3 referenced course elements changed by rule 1)

12. A NEXT/RETURN launch sequence overrides any prerequisites defined in the PRE (Prerequisites) file.

The indicated AUs must be launched by the CMI even if the student would not otherwise be allowed to
launch the lessons due to unfulfilled prerequisites.

13. A rule for a given course element may reference itself in the REQUIREMENTS field. The status value

used (for the self-referring course element) in rule evaluation would either be determined by the last AU
launched or the previous rules evaluation “pass”.

AICC - CMI Guidelines for Interoperability

August-16-2004 146 CMI001 Version 4.0

14. If the firing of a CMP rule results in a change to the status of the associated course element then the parent
course element (if any) containing the changed element must have its own status re-evaluated. The parent
element must be re-evaluated using the default status rules described in 4.2.1. If the re-evaluation results in
a status change in the parent element then its parent must also be re-evaluated. This upward ripple of status
re-evaluation must continue until a parent element is reached that does not evaluate to a different status or
until there are no higher level course elements. All status re-evaluations must be completed before the next
CMP rule is evaluated.

AICC - CMI Guidelines for Interoperability

August-16-2004 147 CMI001 Version 4.0

4.4 Prerequisites
Prerequisites for a given Course Element are defined in a logical expression (see section 4.2.3). If the logical
expression evaluates as true, then the student may begin the Course Element, if it evaluates False, the student is
prohibited from beginning the Ele ment.

4.4.1 Simple Prerequisites
Simple prerequisites are based on the status of a single Course Element. Many fairly sophisticated course
navigation schemes can be constructed with simple prerequisites. Perhaps the most common is the sequential
course. Assume there are four AU's, and the developer wants them to be taken in sequence.

Sequential Course

The file fragments below show how the sequential path is forced on the student with prerequisite logic. There is no
prerequisite for A1, but there are pre requisites for A2, A3 and A4, so A1 must be taken first. After passing or
completing A1, the only AU for which the student has met the prerequisites, is A2. So A2 must be taken second.
After passing A2, the only new AU for which the student is now qualified is A3. And so forth..

AICC Prerequisites File
Structure_Element, Prerequisite
A2, A1
A3, A2
A4, A3

More complex course structures may require the creation of blocks. Simple prerequisites can still be used to enforce
a desired sequence. Assume there are four AUs. The first AU is an introduction that must be taken before any
others. AUs A2 and A3 can be taken in any order, but AU A4 requires the completion of A2 and A3 (Block B1).

A1 A2 A3 A4

AICC - CMI Guidelines for Interoperability

August-16-2004 148 CMI001 Version 4.0

More Complex Course

AICC Course Structure File
block, member, member, member
root, A1, B1, A4
B1, A2, A3

AICC Prerequisites File
Structure_Element, Prerequisite
B1, A1
A4, B1

B1

A1

A2 A3

A4

AICC - CMI Guidelines for Interoperability

August-16-2004 149 CMI001 Version 4.0

4.4.2 Complex Prerequisites

Complex prerequisites allow the use of complex logical expressions for the prerequisite column in the Prerequisite
table. As an example of some of the additional capabilities possible with complex prerequisites, return to the
example of a sequential course of 4 AU's illustrated below..

Sequential Course

In this case however, assume that the cours e designer does not want the student to revisit any AU after it is passed.
With complex prerequisites, you can force a linear sequence, and prevent the review of a previous AU. The
following file fragments show how this may be done.

Notice the A1 prerequisite is that A1 not be passed. As soon as A1 is passed, the prerequisite cannot be met. The
student is "locked out."

AICC Course Structure File
block, member, member, member
root, A1, B1, A4
B1, A2, A3

AICC Prerequisites File
Structure_Element, Prerequisite
A1, ~(A1=p)
A2, ~(A2=p)
A3, ~A3=p
B1, A1
A4, B1=p & ~A4=p

A1 A2 A3 A4

AICC - CMI Guidelines for Interoperability

August-16-2004 150 CMI001 Version 4.0

4.4.3 Complex Sequencing

The more common use of complex prerequisites is to allow complex navigation schemes to be described.

In the course shown in the figure below, the structure is reflected in the file fragments that follow.

Complex Navigation

Inside Block 1, the AUs must be taken sequentially. This can be forced with prerequisites. A3 and A4 need to be
seamlessly linked together so the student takes both in a single session. This can be done with Completion
Requirements,

Block B2 has B1 as a prerequisite. This means that no element in B2 can be started until all elements in B1 are
Passed or Completed. There may be additional prerequisites defined for elements in B2, but their definition is
always additive. For instance, A8 has A7 as a prerequisite in the table. Though not stated explicitly, this is the
equivalent of a prerequisite of (A7 & B1). Similarly, A6 is not listed on the table as having any prerequisite. But
because it is part of B2, it has the implicit prerequisite of B1.

Block B2 includes a pre-test -- A6. The student may select the pretest or take the learning activities in sequence
starting with A7. There are four objectives in the pre-test -- J17, J18, J19, and J20. The course developer has
decided that passing an objective in the pre-test allows the student to skip the AU associated with that objective. J17
is associated with A7, J18 with A8, and so forth. The Completion Require ments Table shows that these AUs are
considered passed when the objectives are passed. Notice in the Completion Requirements Table that the Block
(B2) is considered passed when A7 through A10 are passed. A6 status is not relevant to the completion of the block.

B2

B1

A1

A2 A3 A4 A5

A7

A8 A9 A10

A6

B3

 A11 A16
 A12

 A13
 A14

 A15

 J17

J18

J19

J20

AICC - CMI Guidelines for Interoperability

August-16-2004 151 CMI001 Version 4.0

In Block B3, the AU's can be taken in any order. Passing or Completing any 4 of the six AU's results in passing the
Block. This is shown in the Completions.Requirement. If the student fails A12, he is forced back to A9. This is
shown in the Completions for B3. After completing A9, he can again take any AU in Block B3.

AICC Course Structure File
block, member, member, member, member, member, member
root, A1, B1, B2, B3
B1, A2, A3, A4, A5
B2, A6, A7, A8, A9, A10
B3, A11, A12, A13, A14, A15, A16

AICC Prerequisites File
Structure_Element, Prerequisite
B1, A1
A3, A2
A4, A3
A5, A4
B2, B1
A8, A7
A9, A8
A10, A9
B3, B2

The student must begin with A1. Taking any AU in Block 2 requires passing Block 1. Beginning any AU in Block
3 requires passing Block 2. These rules are shown in the Prerequisites File..

AICC Objectives Relationships File
Course_Element, Member, Member, Member, Member
A6, J17, J18, J19, J20

AICC Completion Requirements File.
Structure_Element, Requirement, Result, Next, Return
A3, A3=passed, ,A4
A7, A7=passed | J17=passed, passed
A8, A8=passed | J18=passed, passed
A9, A9=passed | J19=passed, passed
A10, A10=passed | J20=passed, passed
B2, A7=passed & A8=passed & A9=passed & A10=passed, passed
A12, A12=failed, failed, A9, A12
B3, 4*{A11, A12, A13, A14, A15, A16}, passed

AICC - CMI Guidelines for Interoperability

August-16-2004 152 CMI001 Version 4.0

4.5 Tracking Non-Conforming/Non-Communicating Assignable
Units in a Course

Courses may have AU’s that are non-conforming or non-communicating (i.e. “Dumb Content”). Such AU’s have
not implemented any of the existing communication bindings and do not report data to the CMI. CMI systems are
required to support this type of content in course.

4.5.1 Web Environment Conformance Requirements

In web environments (Which includes HACP and API bindings), the CMI must launch all non-conforming/non-
communicating AU’s. Since no data is reported, the CMI requirements for setting the AU’s status or other data are
undefined. Such undefined behavior is CMI implementation specific.

Note that conforming AU’s in the API binding may communicate but not report Core.Lesson Status. The behavior
of the CMI with regards to determining status is also undefined (and CMI implementation specific).

Future versions of this specification may define specific behaviors for both instances.

4.5.2 File-based Conformance Requirements

In the Windows environment (file-based), the CMI must launch all non-conforming/non-communicating AU’s in the
course if such content can be “synchronously launched”. (See section 5.3 for a description of a single-process
launch).

Since no data is reported, the CMI requirements for setting the AU’s status or other session data are undefined.
Such undefined behavior is CMI implementation specific.

Future versions of this specification may define specific behavior for this case.

AICC - CMI Guidelines for Interoperability

August-16-2004 153 CMI001 Version 4.0

5.0 Communicating via Files (The File Binding)
This chapter defines the File binding to the communication data model in Chapter 2 (i.e. “file -based
communication”). It defines the following:

• The environment in which the File binding operates
• How the CMI launches Assignable Units (AUs)
• How the File binding is used by AUs to communicate with the CMI system.
• Conformance requirements for this binding.
• Which elements from the data model described in Chapter 2 may be used by the File binding (Including

which files specific elements are located in and the format of those files).

Although many of the data elements in the communication data model have different names in the file -based
communication, there are no new data elements appearing in this chapter.

5.1 Conceptual Model
In the File binding (i.e. “file-based communication”), the Assignable Unit (AU) communicates with the CMI using
text files (See figure below). The CMI system writes a “Startup” file (for the AU to read), launches the AU process,
suspends execution (waits) until the AU process terminates, and reads the “Finish” file created by the AU. Based on
information obtained from the Startup file, the AU can obtain launch parameters, previous state information, and
determine where to write its Finish file (and other output files) for the CMI to read. Since data files are used for
communication, there are rules for when and where these data files are written, read, and deleted.

Lesson Evaluation Files

Performance
File

CMI System

Assignable Unit

Startup
File

Finish
File

Interactions
File

Objectives
File Comments

File

Path
File

AICC - CMI Guidelines for Interoperability

August-16-2004 154 CMI001 Version 4.0

5.2 Operating Environment
The operating environment for this binding is the Microsoft Windows Operating environment. (Other operating
environments may be included in the future).

5.3 Launching an Assignable Unit
The method for launching an Assignable Unit (AU) is a simple “synchronous” launch. The CMI system acts as a
“Router” program and uses the operating system to launch another program (i.e. the AU), creating a new process.
Immediately prior to launch, the CMI writes a “startup” data file for the AU. The CMI then launches the AU and
“waits” until the AU completes execution. Upon termination of the AU’s process, the CMI reads the text file(s)
output from the AU and resumes execution (e.g. launches next AU assigned, refreshes menu status, etc.).

This process assumes the following:

• Both the CMI and AU programs are in files located on the local file system (either a disk volume provided
by a LAN fileserver or a local disk drive.)

• Both the CMI and the AU programs are local processes running on the student’s computer workstation

The launch sequence of an AU is as follows:

1. The CMI writes the Startup file to a pre -determined location (see section 5.4.1)
2. The CMI launches the AU application using the Windows CreateProcess() function or similar

Windows function. (This is commonly called a Windows “command line” type launch).
3. The CMI “waits” until the AU application process has terminated. (The CMI monitors the AU process

created)
4. As the AU starts up, it reads the Startup file and then immediately deletes it.
5. Prior to exit the AU writes the finish file (and other evaluation files) to locations specified in the

startup file by the CMI.
6. The AU exits
7. The CMI reads the Finish file and then immediately deletes it. Other evaluation files are also read (if

they exist) but are not necessarily deleted.
8. The CMI resumes execution.

AU Processes
An AU must be designed so that it can be launched in the windows (32 bit) environment using the windows
CreateProcess() function (or a similar windows “command line” function). The CMI will monitor the created
process to determine when the AU has terminated. The process created from this action may spawn other processes,
but it must be the “primary process”. The AU must close all of its other spawned processes before closing the
originating process. If an AU does not do this, then the CMI may assume that the AU has terminated before it
actually has.

CMI Launch example
The following Microsoft Visual Basic code example shows how a CMI could synchronously launch an AU using
the technique described above.

Synchronous Launch example
‘ >>>> Step 1 – Use CreateProcess() Launch application <<<<<<
X = CreateProcessA(0&, cmdline$, 0&, 0&, 1&, NORMAL_PRIORITY_CLASS, 0&, working$, _
 NameStart, NameOfProc)

‘ >> Step 2 - WaitforSingleObject() - Wait until primary process is terminated <<
X = WaitForSingleObject(NameOfProc.hProcess, INFINITE)

‘ >> Step 3 – Destroy handle to the process <<
X = CloseHandle(NameOfProc.hProcess)

AICC - CMI Guidelines for Interoperability

August-16-2004 155 CMI001 Version 4.0

5.4 Method of Communication
Communication between the CMI and AUs is accomplished by reading/writing text files. The files used for this
communication are described in the table below. There are 2 file formats used for these files CMIFormatINI and
CMIFormatCSV. The table also indicates the format for each file. See data types CMIFormatINI and
CMIFormatCSV (in section 9.0) for detailed descriptions of the formats used.

File Description
Startup File A text file written by the CMI for the AU to read at startup.

Contains AU specific launch parameters, previous state
information, and file locations for the AU to write output file(s).
(see section 5.6.1)

Finish File A text file containing information on student activity, performance,
and AU state. Written by the AU prior to exit (see section 5.6.2).
This file is the “complement” of the Startup File.

Comments File A text file written by the AU that contains comments for the
student. (See section 5.6.3)

Objectives File A text file written by the AU that contains student performance to
specific objectives (see section 5.6.4).

Path File A text file written by the AU that records the path the student user
navigated thru the AU (see section 5.6.5).

Interactions File A text file written by the AU that contains detailed information on
each student interaction measured (see section 5.6.6).

Performance File A text file written by the AU that contains Learner performance
information. (see section 5.6.7).

5.4.1 Startup File (Usage)

The Startup file is used by the CMI system to pass data to the AU. It is the only “input” file created by the CMI for
the AU to read. The CMI system creates the Startup file just prior to the launch of the AU.

There are three methods available for the AU to determine the Startup file location :

1. An additional parameter containing the Startup file location/name is included in AU’s command line.
2. The location of the Startup file location/name is found in the Windows environment variable

“PARAM$CMI” (e.g. “PARAM$CMI=C:\Winnt\Temp\SomeStartupFileName.ext”).
3. The location of the Startup file is in the “Windows directory” with a name of “PARAM.CMI” (e.g.

“C:\WINDOWS\PARAM.CMI”). The Windows directory varies by workstation, it is discovered by the
AU using the Microsoft Windows GetWinDir() function or by using the “windir” system environment
variable.. Examples of this directory are "c:\windows" for Windows95/98 and "c:\winnt" for Windows NT,
ME, XP, 2000.

The CMI system must support all 3 methods of Startup file location. Typically, most AUs use method #3.

Once the AU Application is initiated, it reads the Startup file created by the calling CMI system and then
immediately deletes it.

The AU obtains the following information from the CMI via the Startup file:

• Where to write the Finish File
• Where to write lesson evaluation files (if any)
• Launch parameters
• Previous state (i.e. “Bookmarking”) information
• Previous status information.

For a complete list of data elements contained in the Startup file and its format - see section 5.6.1.

AICC - CMI Guidelines for Interoperability

August-16-2004 156 CMI001 Version 4.0

5.4.2 Finish File (Usage)
The AU must create a Finish file containing data to be passed back to CMI so that the CMI system can update its
student performance data (and perform any necessary display updates or routing activity). The CMI determines
where the Finish file is to be written by the AU. The AU discovers this location via the communication data
element Core.Output File which is contained in the Startup file - see section 5.6.1.

The AU writes the Finish file just prior to exit. The CMI system then reads the Finish file and immediately deletes it.

The CMI obtains the following information from the AU via the Finish file:

• Status updates
• AU session state (i.e. “Bookmarking”) information to store

For a complete list of data elements contained in the Finish file and its format - see section 5.6.2.

5.4.3 Evaluation Files (Usage)
In addition to the Finish and Startup file, there is a group of optional files called the Evaluation Files. They are as
follows:

• Comments File (see section 5.6.3)
• Objectives File (see section 5.6.4)
• Interactions File (see section 5.6.5)
• Path File (see section 5.6.6)
• Performance File (see section 5.6.7)

The following is true for each of the evaluation files:

• If the AU (and the CMI) supports the data elements contained in file, the AU will write them to the location
specified in the Startup file.

• If the file already exists, the AU appends the data to that file. If the file does not exist, the file is created
and the data deposited. The CMI system is responsible for management of these files.

• If the AU has the ability to create the evaluation file(s) but the CMI does not provide a file location, then
the evaluation file(s) will not be written.

5.4.4 Error Conditions
To be determined.

AICC - CMI Guidelines for Interoperability

August-16-2004 157 CMI001 Version 4.0

5.5 Conformance Requirements

Conformance to the file binding may be looked at from two viewpoints, that of the Assignable Unit (AU) and that of
the CMI. There are three levels of obligation described in this binding specification:

• Mandatory
• Optional
• Extension

Obligations for the AU and the CMI are different.

CMI Conformance
Mandatory means that the CMI shall read, delete, and create the indicated data file(s), properly store and use
mandatory communication data elements.

Optional means that a conforming CMI may not respond at all indicated files, or optional communication data
elements. A conforming CMI may support many options.

An extension is a file or data element that is not described in this specification. Extensions may be supported by a
CMI. However, extension data elements (or files) may not perform the identical function as data elements (or files)
defined in this specification; and extension data elements may not contain the same semantic values as defined data
elements. If extensions are used to duplicate mandatory and optional features, the CMI is non-conforming.

AU Conformance
Mandatory means that the AU shall read, delete, and create the indicated data file(s), and properly store and use the
mandatory data elements.

Optional means that the AU may read or create data elements in the indicated data file(s), and properly store and use
the data elements indicated as optional.

An extension is a file or data element that is not described in this specification. Extensions may be supported/used
by an AU. However, extension data elements (or files) may not perform the identical function as data elements (or
files) defined in this specification; and extension data elements may not contain the same semantic values as defined
data elements. If extensions are used to duplicate mandatory and optional features, the AU is non-conforming.

5.5.1 CMI Responsibilities

Launch and Communication
The CMI system shall do the following to launch an AU:

1. Write a Startup File
2. Synchronously launch the AU application (i.e. launch and “wait”) using the operation system
3. Monitor the AU process until termination
4. Read the resulting Finish File
5. Delete the Finish immediately after reading it contents

The CMI shall support all 3 mechanisms of Startup file location (described in section 5.4). The CMI must support
all the data elements described for this binding as mandatory (described in section 5.6). The CMI may support the
optional data elements (and files). The CMI may also support extensions not defined in this specification as long as
those extensions do not duplicate any mandatory or optional features. Additionally, the support of any extensions
must not cause the failure of any AU not using the extensions.

AICC - CMI Guidelines for Interoperability

August-16-2004 158 CMI001 Version 4.0

Sequencing
An AU assignable unit may only be launched by a CMI. An AU may not itself launch other assignable units. An
assignable unit must, at a minimum, be able to:

1. Be synchronously launched (as described in sections5.3 and 5.4)
2. Read, write, and delete the required communication file(s) (as described in sections 5.3 and 5.4)

Flow control – moving from one the AU object to another – is assumed to be the responsibility of the CMI and not
within the assignable unit (AU) itself. This is conceptually important because AU reuse cannot really happen if the
AU has embedded information that is context specific to the course. In this context, flow control means that the
decision of what AU (the AU) will next be presented to the student is made by the CMI. (This recognizes that some
AU’s may make decisions—that is, branch – within itself, but that kind of internal flow is hidden from the CMI.)

The determination of which AU(s) the student is routed to is determined solely by the CMI and is defined in large
part by the Course Structure description (Chapter 3). Chapter 3 defines information about the AU that is context
specific to the course (e.g., the default sequence of AU’s, and prerequisites or completion requirements that might
alter the delivery path.)

5.5.2 Assignable Unit (AU) Responsibilities

Launch and Communication
An assignable unit must, at a minimum, be able to do the following:

1. Have the ability to be synchronously launched (as described in sections5.3 and 5.4)
2. Read (and delete) the Startup File, and write the Finish file(as described in sections 5.3, 5.4, and 5.6)
3. Support all the following communication data elements (listed in the tables below)

Startup File – AU mandatory data elements

Group Name or Keyword Communication Data Model Name Section
[Core] Core 2.1
 Output_File Core.Output File 2.1.3

Finish File – AU mandatory data elements

Group Name or Keyword Communication Data Model Name Section
[Core] Core 2.1
 Lesson_Location Core.Lesson Location 2.1.4
 Lesson_Status Core.Lesson Status 2.1.6
 Score Core.Score 2.1.10
 Time Core.Session_Time 2.1.12

Sequencing
An AU may not itself launch other assignable units

AICC - CMI Guidelines for Interoperability

August-16-2004 159 CMI001 Version 4.0

5.6 Communication Data Model Mapping

This section contains the mapping of the communication data model elements (defined in section 2.0) to the file
(file -based communication) binding. The contents of these files are defined in this section. The files used for
communication are as follows:

• Startup File
• Finish File
• Comments File
• Objectives File
• Path File
• Interactions File
• Performance File

The following is defined for each of the above files:
• A description of the file’s purpose
• A list of communication data model elements used
• The file’s data format
• An example

5.6.1 Startup File

Purpose
The Startup file is used by the CMI system to pass data to the AU. (See section 5.4.1).

Data Model Elements
The following table describes the Group and Keywords used by the Startup file with corresponding data model
names, references, and Mandatory/Required designations. For specific usage of a data element refer to the
corresponding section in the Chapter 2.0 Communication Data Model . Note that n indicates an array index.

Group Names and
Keywords Communication Data Model Name Section CMI Obligation
[Core] Core 2.1 Mandatory
 Student_ID Core.Student Id 2.1.1 Mandatory
 Student_Name Core.Student Name 2.1.2 Mandatory
 Output_File Core.Output File 2.1.3 Mandatory
 Lesson_Location Core.Lesson Location 2.1.4 Mandatory
 Credit Core.Credit 2.1.5 Mandatory
 Lesson_Status Core.Lesson Status 2.1.6 Mandatory
 Core.Entry 2.1.8 Mandatory
 Path Core.File Path 2.1.9 Mandatory
 Score Core.Score 2.1.10 Mandatory
 Core.Score.Raw 2.1.10 Mandatory
 Core.Score.Max 2.1.10 Mandatory
 Core.Score.Min 2.1.10 Mandatory
 Time Core.Total_Time 2.1.12 Mandatory
 Lesson_Mode Core.Lesson Mode 2.1.13 Optional
[Core_Lesson] Suspend Data 2.1 Mandatory
[Core Vendor] Launch Data 2.3 Mandatory
[Comments] Comments From LMS 2.6 Optional
[Evaluation] Evaluation 2.7 Optional
 Course_ID Evaluation.Course ID 2.7.2 Optional
 Comments_File Evaluation.Comments_File 2.7.1 Optional
 Interactions_File Evaluation.Interactions_File 2.7.3 Optional
 Objectives_Status_File Evaluation.Objective_Status_File 2.7.4 Optional
 Path_File Evaluation.Path_File 2.7.5 Optional
 Performance_File Evaluation.Performance_File 2.7.6 Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 160 CMI001 Version 4.0

Group Names and
Keywords Communication Data Model Name Section CMI Obligation
[Objectives_Status] Objectives 2.8 Optional
 J_ID.n Objectives.ID 2.8.1 Optional
 J_Score.n Objectives.Score 2.8.2 Optional
 Objectives.Score.Raw 2.8.2 Optional
 Objectives.Score.Max 2.8.2 Optional
 Objectives.Score.Min 2.8.2 Optional
 J_Status.n Objectives.Status 2.8.3 Optional
[Student_Data] Student Data 2.9 Optional
 Attempt_Number Student Data.Attempt Number 2.9.1 Optional
 Mastery_Score Student Data.Mastery Score 2.9.3 Optional
 Max_Time_Allowed Student Data.Max Time Allowed 2.9.3 Optional
 Time_Limit_Action Student Data.Time Limit Action 2.9.4 Optional
 Student Data.
 Lesson_Status.n Student Data.Sessions Journal.Lesson Status 2.9.7.2 Optional
 Score.n Student Data.Sessions Journal.Lesson Score 2.9.7.1 Optional
 .Raw 2.9.7.1 Optional
 .Max 2.9.7.1 Optional
 .Min 2.9.7.1 Optional
[Student_Demographics] Student Demographics 2.13 Optional
 City Student Demographics.City 2.13.1 Optional
 Class Student Demographics.Class 2.13.2 Optional
 Company Student Demographics.Company 2.13.3 Optional
 Country Student Demographics.Country 2.13.4 Optional
 Experience Student Demographics.Experience 2.13.5 Optional
 Familiar_Name Student Demographics.Familiar Name 2.13.6 Optional
 Instructor_Name Student Demographics.Instructor Name 2.13.7 Optional
 Job_Title Student Demographics.Title 2.13.12 Optional
 Native_Language Student Demographics.Native Language 2.13.8 Optional
 State Student Demographics.State 2.13.9 Optional
 Street_Address Student Demographics.Street Address 2.13.10 Optional
 Telephone Student Demographics.Telephone 2.13.11 Optional
 Years_Experience Student Demographics.Years Experience 2.13.13 Optional
[Student_Preferences] Student Preference 2.1 Optional
 Audio Student Preference.Audio 2.10.1 Optional
 Language Student Preference.Language 2.10.2 Optional
 Lesson_Type Student Preference.Lesson Type 2.10.3 Optional
 Speed Student Preference.Speed 2.10.4 Optional
 Text Student Preference.Text 2.10.5 Optional
 Text_Color Student Preference.Text Color 2.10.6 Optional
 Text_Location Student Preference.Text Location 2.10.7 Optional
 Text_Size Student Preference.Text Size 2.10.8 Optional
 Video Student Preference.Video 2.10.9 Optional
 Window.1 Student Preference.Windows 2.10.10 Optional

File Format
The Startup file is text formatted as datatype CMIFormatINI. (see section 9.0 - Datatypes)

Example
An example of a typical Startup file is show below

Startup File example
;
; Startup File
;
[Core]
 ; Comment
 Student_ID = XYZ_1234
 Student_Name = Hyde, Jackson Q.
 Output_File = C:\Windows\Temp\outparam.cmi
 Lesson_Location = 45
 Credit = CREDI
 Lesson_Status = INCOMPLETE
 Score =
 Time = 0000:04:30.34
 Lesson_Mode = Normal

AICC - CMI Guidelines for Interoperability

August-16-2004 161 CMI001 Version 4.0

Startup File example
; Core_lesson is free-form group
[CORE_LESSON]

my lesson state data – 1111111111111111111000000000000000000000000

1111111111111111111000000000000000000000000 – end my lesson state data
; Core_vendor is also a free-form group
[Core_Vendor]

My Start up parameters
45,67,78,RR
End of My startup parameters

[Evaluation]
Course_ID = {}

Comments_File
Interactions_File
Objectives_Status_File
Path_File
Performance_File

[Student_Data]
Mastery_Score = 100

5.6.2 Finish File

Purpose
The Finish file is used by the AU to pass data to the CMI. (See section 5.4.2).

Data Model Elements
The following table describes the Group and Keywords used by the Finish file with corresponding data model
names, references, and Mandatory/Required designations. For specific usage of a data element refer to the
corresponding section in the Chapter 2.0 Communication Data Model . Note that n indicates an array index.

Group Names and
Keywords Communication Data Model Name Section CMI Obligation

[Core] Core 2.1 Mandatory
 Lesson_Location Core.Lesson Location 2.1.4 Mandatory
 Lesson_Status Core.Lesson Status 2.1.6 Mandatory
 Core.Exit 2.1.7 Mandatory
 Score Core.Score 2.1.10 Mandatory
 Core.Score.Raw 2.1.10 Mandatory
 Core.Score.Max 2.1.10 Mandatory
 Core.Score.Min 2.1.10 Mandatory
 Time Core.Session_Time 2.1.12 Mandatory
[Core_Lesson] Suspend Data 2.1 Mandatory
[Comments] Comments From Learner 2.4 Optional
[Objectives_Status] Objectives 2.8 Optional
 J_ID.n Objectives.ID 2.8.1 Optional
 J_Score.n Objectives.Score 2.8.2 Optional
 Objectives.Score.Raw 2.8.2 Optional
 Objectives.Score.Max 2.8.2 Optional
 Objectives.Score.Min 2.8.2 Optional
 J_Status.n Objectives.Status 2.8.3 Optional
[Student_Data] Student Data 2.9 Optional
 Tries_During_Lesson Student Data.Tries During Lesson 2.9.5 Optional
 Try_Score.n Student Data.Tries.Try_Score 2.9.2 Optional
 Try_Time.n Student Data.Tries.Try_Time 2.9.2 Optional
 Try_Status.n Student Data.Tries.Status 2.9.2 Optional
[Student_Preferences] Student Preference 2.1 Optional
 Audio Student Preference.Audio 2.10.1 Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 162 CMI001 Version 4.0

Group Names and
Keywords Communication Data Model Name Section CMI Obligation

 Language Student Preference.Language 2.10.2 Optional
 Lesson_Type Student Preference.Lesson Type 2.10.3 Optional
 Speed Student Preference.Speed 2.10.4 Optional
 Text Student Preference.Text 2.10.5 Optional
 Text_Color Student Preference.Text Color 2.10.6 Optional
 Text_Location Student Preference.Text Location 2.10.7 Optional
 Text_Size Student Preference.Text Size 2.10.8 Optional
 Video Student Preference.Video 2.10.9 Optional
 Window.n Student Preference.Windows 2.10.10 Optional

File Format
The Finish file is text formatted as datatype CMIFormatINI. (See section 5.4.1 and Chapter 9.0 - Datatypes)

Example
An example of a typical Finish file is show below:

Finish File example
;
; Finish File
;
[Core]
 Lesson_Location = 87
 Lesson_Status = C
 Score =
 Time = 00:02:30

[CORE_LESSON]

my lesson state data – 1111111111111111111000000000000000001110000

111111111111111111100000000000111000000000 – end my lesson state data

[COMMENT]

<1><L.Slide#2> This slide has the fuel listed in the wrong units <e.1>

5.6.3 Comments File

Purpose
This file contains freeform feedback from the student (recorded by the AU). It is a duplicate of the [Comments]
group that is passed to the CMI system in the Finish file. If a CMI system receives data from the AU in both
[Comments] group and the Comments File , the CMI must save the data from the Comments File and discard the
[Comments] group data.

Data Model Elements
The following table identifies the Comment File’s Fields, Data Model Names, and Data Model Section reference.

CSV File Field Identifier Communication Data Model Name Section
Course_ID Itemized Comments From Learner.Course_ID 2.5.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Itemized Comments From Learner.Lesson_ID 2.14
Date Itemized Comments From Learner.Date 2.5.3
Time Itemized Comments From Learner.Time 2.5.7
Location Itemized Comments From Learner.Location 2.5.6
Comment Itemized Comments From Learner.Content 2.5.1

AICC - CMI Guidelines for Interoperability

August-16-2004 163 CMI001 Version 4.0

File Format
The Comments file is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 – Datatypes
for a detailed description of formatting rules) . All CSV File Field Identifiers listed above must be present in the
header row, even if a specific field is not supported/used by the CMI. All unsupported data elements are represented
as empty strings. Note that field identifiers identify field position (i.e. “columns”) in a record (i.e. “row”) and can be
in any order. Custom fields may be added to support vendor specific extensions but these must have corresponding
field identifiers in the header row and must not duplicate or conflict with existing fields’ functionality.

Example
An example of a typical Comments file is show below:

Comments File example
Location ,Comment ,Course_ID, Student_ID, Lesson_ID, Date, Time
Slide #6, “The color of indicator is wrong”,APU101,User03,APU-START4, 2003/01/23 , 12:45:45
Slide #6, “The color of indicator is wrong”,APU101,User03,APU-START4, 2003/01/23 , 12:45:45

5.6.4 Interactions File

Purpose
All of the items in this file are related to a recognized and recorded input from the student (recorded by the AU).
Normally, the interactions recorded are student responses to a question. (See sections listed in table below for
description of the data elements recording student interactions)

Data Model Elements
The following table identifies the Interactions File’s Fields, Data Model Names, and Data Model Section reference.

CSV File Field Identifier Communication Data Model Name Section
Course_ID Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Lesson_ID 2.14
Date Interactions.Date 2.11.3
Time Interactions.Time 2.11.4
Interaction ID Interactions.ID 2.11.1
Objective ID Interactions.Objectives 2.11.2
Type Interaction Interactions.Type 2.11.5
Correct Response Interactions.Correct Responses 2.11.6
Student Response Interactions.Student Response 2.11.8
Result Interactions.Result 2.11.9
Weighting Interactions.Weighting 2.11.7
Latency Interactions.Latency 2.11.10

File Format
The Interactions file is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 – Datatypes
for a detailed description of formatting rules) . All CSV File Field Identifiers listed above must be present in the
header row, even if a specific field is not supported/used by the CMI. All unsupported data elements are represented
as empty strings. Note that field identifiers identify field position (i.e. “columns”) in a record (i.e. “row”) and can be
in any order. Custom fields may be added to support vendor specific extensions but these must have corresponding
field identifiers in the header row and must not duplicate or conflict with existing fields’ functionality.
Example
An example of a typical Interactions file is show below:

Interactions File example
"course_id","student_id","lesson_id","date","time","interaction_id","objective_id",
"type_interaction","correct_response","student_response","result","weighting","latency"
"A340ft-2","jqh085","APU1","2004/01/15","15:14:23",37,ft1016,C,A,C,W,, 00:00:3
"A340ft-2","wam016","APU1","2004/01/15","15:14:23",38,ft2223,t,t,t,,, 00:00:01
"A340ft-2","dag085","APU1","2004/01/15","15:14:23",39,ft1134,C,B,B,C,, 00:00:02
"A340ft-2","trd018","APU1","2004/01/15","15:14:23",40,ft1156,C,C,C,C,, 00:00:04

AICC - CMI Guidelines for Interoperability

August-16-2004 164 CMI001 Version 4.0

5.6.5 Objectives Status File

Purpose
This file contains information on how the student has performed on objectives related to the AU. The performance
may be related to previous sessions in the AU, or to the student user’s performance in other AU’s (in the same
course) related to the same objectives. These objectives are only those associated with the current launching AU,
not all the objectives in the course or curriculum.

Data Model Elements
The following table identifies the Objective Status File’s Fields, Data Model Names, and Data Model Section
reference.

CSV File Field Idenifier Communication Data Model Name Section
Course_ID Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Lesson_ID 2.14
Date Objectives.Date 2.8.4
Time Objectives.Time 2.8.5
Objective ID Objectives.ID 2.8.1
Score Objectives.Score 2.8.2
Status Objectives.Status 2.8.3
Mastery Time Objectives.Mastery Time 2.8.6

File Format
The Objectives Status is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 –
Datatypes for a detailed description of formatting rules) . All CSV File Field Identifiers listed above must be
present in the header row, even if a specific field is not supported/used by the CMI. All unsupported data elements
are represented as empty strings. Note that field identifiers identify field position (i.e. “columns”) in a record (i.e.
“row”) and can be in any order. Custom fields may be added to support vendor specific extensions but these must
have corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.
Example
An example of a typical Objectives Status file is show below:

Objectives Status File example
COURSE_ID , STUDENT_ID, LESSON_ID, DATE , TIME, OBJECTIVE_ID, SCORE, STATUS,
MASTERY_TIME
"MD80-2","STU1009","APU1","1994/01/15","10:14:23","APU1684",3,, "passed","00:02:37"

5.6.6 Path File

Purpose
To provide a mechanism to record the “paths” a student use took during AU session(s). The paths recorded are
generally the order in which the student navigates through the AU. (See sections listed in table below for
descriptions of the data elements recording path information)
.

Data Model Elements
The following table identifies the Path File’s Fields, Data Model Names, and Data Model Section reference.

CSV File Field Identifier Communication Data Model Name Section
Course_ID Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1

AICC - CMI Guidelines for Interoperability

August-16-2004 165 CMI001 Version 4.0

CSV File Field Identifier Communication Data Model Name Section
Lesson_ID Lesson_ID 2.14
Date Paths.Date 2.12.2
Time Paths.Time 2.12.3
Element Location Paths.Location ID 2.12.1
Status Paths.Status 2.12.4
Why_Left Paths.Why Left 2.12.5
Time_in_Element Paths.Time in Element 2.12.6

File Format
The Path file is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 – Datatypes for a
detailed description of formatting rules) . All CSV File Field Identifiers listed above must be present in the header
row, even if a specific field is not supported/used by the CMI. All unsupported data elements are represented as
empty strings. Note that field identifiers identify field position (i.e. “columns”) in a record (i.e. “row”) and can be in
any order. Custom fields may be added to support vendor specific extensions but these must have corresponding
field identifiers in the header row and must not duplicate or conflict with existing fields’ functionality.
Example
An example of a typical Path file is show below:

Path Status File example
course_id, student_id, lesson_id ,date, time, element_location , status ,
why_left , time_in_element
"course6","stu2310","first1","2003/06/05","14:10:31","A","P","S","00:00:24"
"course6","stu2310","first1","2003/06/05","14:10:55","E","P","S","00:01:06"
"course6","stu2310","first1","2003/06/05","14:12:01","A","I","L","00:02:24"
"course6","stu2310","first1","2003/06/05","14:13:25","B","P","S","00:00:54"
"course6","stu2310","first1","2003/06/05","14:14:19","D","P","L","00:02:40"
"course6","stu2310","first1","2003/06/05","14:16:59","E","P","S","00:03:03"
"course6","stu2310","first1","2003/06/05","14:20:02","F","P","E","00:02:12"

5.6.7 Performance File

Purpose
To record simulation-specific data from AU session(s) for later analysis.

Data Model Elements
Not applicable. The performance file data is developer-defined.

File Format
The Path file is text. The formatting of this text is developer-defined.

Example
Not applicable.

AICC - CMI Guidelines for Interoperability

August-16-2004 166 CMI001 Version 4.0

6.0 Communicating via HTTP (The HACP Binding)
This chapter defines the HTTP/S-based AICC/CMI Protocol (HACP) binding to the communication data model in
Chapter 2.0. It defines the following:

• The environment in which the HACP binding operates
• How the CMI launches Assignable Units (AUs)
• How the HACP binding is used by AUs to communicate with the CMI system. (Using HTTP/S messages)
• Conformance requirements for this binding.
• Which elements from the data model described in Chapter 2.0 may be used by the HACP binding

(Including the HTTP/S messages specific elements are located in and the format of those HTTP/S
messages.)

Although many of the data elements in the communication data model have different names in the HACP binding,
there are no new data elements appearing in this chapter.

6.1 Conceptual Model
In the HACP binding, the Assignable Unit (AU) communicates with the CMI using a series of HTTP/S messages
(See figure below). The assignable unit (AU) is launched by the CMI redirecting the web browser to a URL. The
AU always initiates the communication with a message to get data or send data to the CMI. The CMI listens for and
responds to message requests from the AU. For every AU “request” message there is a CMI “response” message.

HTTP is client/server protocol. There is a client program (usually a Web Browser) making requests and a server
program (a Web Server) responding to the requests. With HTTP/S protocol, client and server programs may be
running on the same computer or on different computers at different locations. Some portions of the CMI run as
part of the Web Server (i.e. an HTTP/S server) and other portions (The student User interface) run as part of the
Web Browser (This is also true for assignable units).

Assignable Unit

Internet Request
Message

CMI System

Response
Message

AICC - CMI Guidelines for Interoperability

August-16-2004 167 CMI001 Version 4.0

6.2 Operating Environment
The operating environment for this binding is the HTTP (Hyper-Text Transfer Protocol) client and server
environment(s) (including Secure HTTP [a.k.a. HTTPS]). The HTTP “client” is typically a web-browser. Please
refer to following document for more information about HTTP: RFC 1945 – Hypertext Transfer Protocol –
HTTP/1.0 .

6.3 Launching an Assignable Unit
The CMI provides an interface for the learner. The CMI launches the AU by dynamically appending parameters to
URL (Uniform resource locator) where the AU is located and directing the web browser to launch this specially
modified URL.

This process assumes the following:

• The CMI user interface is operating within a web-browser
• The AU is initiated from the web browser

The launch sequence of an AU is as follows:
1. Student selects an Assignable Unit (AU) to launch from the CMI’s user’s interface (Menu)
2. The CMI appends startup parameters to the URL location of the AU and directs the web-browser to this

“modified” URL (see 6.3.1 The “Launch URL” - below).
3. The AU starts execution and retrieves the Query String from the web-browser, parses the startup parameters and

sends a message to the CMI requesting startup and/or previous state data. This message is called a “GetParam”
(see section 6.4.4). The “GetParam” message is always the first message issued by the AU.

4. The CMI receives the “GetParam” request and sends startup data.
5. During the rest of the AU session, the AU sends message(s) CMI reporting student performance. These

messages are the “PutParam” message (see section 6.4.5) and other “optional” messages (see section 6.4.6). The
AU must send at least one “PutParam” message prior to exit.

6. Just prior to exiting, the AU sends a message to the CMI indicating that the AU session has terminated. This
message is called a “ExitAU” (see section 6.4.7)

6.3.1 The “Launch URL”

The Launch URL is dynamically created by the CMI in order to launch the AU. The structure of the launch URL is
as follows:

{URL to Assignable Unit}?{CMI generated query string}

The (CMI generated) query string is separated from the Assignable Unit’s URL by “?” (Question mark). The URL
to the AU is the value of Course Elements.Filenamecorresponding to the AU in the course structure (see section
3.4.7).. The query string is composed of name/value pairs (i.e. name=value) separated by ampersands (“&”s). All
values are url-encoded (see section 6.4.1.1) and must be url-decoded prior to interpretation. The value of Course
Elements.Web Launch Parameters is appended to the CMI generated querystring.

AICC - CMI Guidelines for Interoperability

August-16-2004 168 CMI001 Version 4.0

The query string has the following structure:

aicc_sid={CMI generated session ID}&aicc_url={URL to receive AU messages}&[AU specific launch parameters }

AU specific launch parameters are obtained by the CMI from the course structure from Course Elements.Web
Launch Parameters data element (for the AU being launched). See section 3.4.14 for description and format. The
other name/value pairs in the query string are described in the table below:

Launch parameter (Name/Value pairs) generated by the CMI
Name Value Usage/Description Value Data Type

(see Datatypes 9.0)
Obligation

AICC_SID A string generated by the CMI (prior to AU
launch) that uniquely identifies the AU session
among all other active AU sessions The
Assignable Unit uses this value to identify its
session when making requests to the CMI
system.

This value must be contained in request
messages made by the AU. (See section 6.4.2)

CMIIdentifier
(URL-Encoded)

Mandatory

AICC_URL The URL where the AU is to send its HACP
request messages.

CMIurl
(URL-Encoded)

Mandatory

AICC - CMI Guidelines for Interoperability

August-16-2004 169 CMI001 Version 4.0

6.4 Method of Communication
The method of communication utilizes specially formatted HTTP messages. HTTP is a symmetric protocol. For
every request, there is a response. The AU sends “request” messages to the CMI and the CMI sends “response”
messages back. The AU initiates all communication to the CMI. There are 8 types of request messages that an AU
can make to the CMI, they are described in the table below.

HACP
Message Type

Description

GetParam In response to this AU request message the CMI sends a response
message that contains AU specific launch parameters, previous state
information, and a acknowledgement (see section 6.6.1)

PutParam This AU request message sends information on student activity,
performance, and AU state to the CMI system. The CMI receives this
information and send an acknowledgement as a response. (see section
6.6.2).

PutComments This AU request message sends information that contains written
“comments” made by the student to the CMI system. The CMI receives
this information and sends an acknowledgement as a response. (see
section 6.6.3).

PutObjectives This AU request message sends information that contains student
performance (to specific objectives) to the CMI system. The CMI receives
this information and sends an acknowledgement as a response. (see
section 6.6.4).

PutPath This AU request message sends information to the CMI with regards to the
path the student user navigated thru the AU to the CMI system. The CMI
receives this information and sends an acknowledgement as a response.
(see section 6.6.5).

PutInteractions This AU request message sends information that contains detailed data on
each student interaction measured to the CMI system. The CMI receives
this information and sends an acknowledgement as a response. (see
section 6.6.6).

PutPerformance This AU request message sends information that contains Learner
performance information to the CMI system. The CMI receives this
information and sends an acknowledgement as a response. (see section
6.6.7).

ExitAU This AU request message sends this message to terminate the AU
session. The CMI receives this message and sends an acknowledgement
as a response. (see section 6.6.8).

HACP Message Sequence Rules

In a (HACP) communication session with the CMI, the AU must meet the following message sequence rules:

Rule #1 - The first HACP message issued must be a GetParam.
Rule #2 - The last HACP message issued must be an ExitAU.
Rule #3 - At least one PutParam message must be issued prior to an Exit AU message.
Rule #4 - No HACP messages can be issued after a successfully issued ExitAU message.

6.4.1 HACP Transport Mechanism

All HACP messages are sent/received using HTTP/S protocol. (See RFC1945 for a detailed description of HTTP
protocol.) The HACP message data are contained in the "entity-body" of HTTP request and response messages.

The AU is the “client” (initiates all communication) and the CMI is the “server” (responds to requests). The AU
sends messages to the URL location indicated in the “AICC_URL” launch parameter. (See section 6.3). The
“AICC_SID” launch parameter (also in Section 6.3) is used by the AU in the body of request messages to identify
the AU session to the CMI.

AICC - CMI Guidelines for Interoperability

August-16-2004 170 CMI001 Version 4.0

AU request messages are sent to the CMI system via HTTP messages using the POST method (the GET method is
not allowed for HACP communication). The content-type of request messages is “application/x-www-form-
urlencoded”.

The CMI responds to a HTTP/POST message with a HTTP response message. The content-type of response
messages is “text/plain”.

6.4.1.1 URL-Encoding/Decoding

All name/value pairs in HACP request messages (see section 6.4.2) and URL launch parameters (see section 6.3.1)
require that values (and sometimes names) be url-encoded. Url-encoding is used for data transport purposes only.
Once url-encoded data is received/read, it must be url-decoded prior to interpreting the data.

The rules for url-encoding are as follows:

Rule #1 - Spaces are converted to the “+” (Plus sign) or “%20”

Rule #2 - All “unsafe” characters, control characters, and “upper ASCII” characters (see table below) must

always be encoded in an escape sequence. An escape sequence is a “%” (percent sign) followed
by 2 hexadecimal digits. The BNF notation (see sections 10.0 and 10.2) for an escape sequence
is as follows:

“%” HEX HEX

 For example, “%3F” would represent a url-encoding of “?” (Question mark) character.

Table of ASCII characters that must be encoded
Characters

That must be encoded
BNF Notation

(see sections 10.0 and 10.2)
Unsafe Characters "/" | ";" | "?" | "{" | "}" | "|" | "\" |

"^" | "~" | "[" | "]" | "`" | "%" | "#" |
">" | "<" | <">

Control Characters CTL
“Upper ASCII” characters
(per ISO-8859)

EXTENDED

Rule #3 - Any other characters may be encoded in an escape sequence (if desired).

The rules for url-decoding are as follows:

Rule #1 - “+” (Plus signs) are converted to spaces

Rule #2 - All characters encoded in escape sequences must be decoded.

Rule #3 - All other characters remain unchanged.

AICC - CMI Guidelines for Interoperability

August-16-2004 171 CMI001 Version 4.0

6.4.2 HACP Request Message Format

HACP request message are HTTP request messages with the following properties:

The content-type is “application/x-www-form-urlencoded”. This content-type follows a convention called

“name/value pairs”. The name is separated from the value by ̀ =' and name/value pairs are separated from each

other by ̀ &'. (e.g. name1=value2&name2=value2). All names and values are url-encoded (see section 6.4.1.1).

The entity-body is composed of the following name/value pairs (depicted in the table below):

Name/Value pairs in a HACP request message

Name Value Usage/Description Value Data Type
(see Datatypes 9.0)

Obligation

command Defines request message type. HacpCommand
 (URL encoded)

Mandatory

version Version of the CMI Specification. CMIVersionNumber
(URL encoded)

Mandatory

session_id This is a string that uniquely identifies the AU
session among all other active AU sessions The
Assignable Unit uses this value to identify its
session when making requests to the CMI
system.

The value used for session_id is passed to the
AU by the CMI via the AICC_SID launch
parameter. (See section 6.3.1)

CMIIdentifier
 (URL encoded)

Mandatory

AU_password AU specific password. This value must match the
corresponding value for Course Elements.AU
Password (See 3.4.15) in the course structure.

CMIString255CSV
 (URL encoded)

Optional

AICC_Data Data being sent to the CMI system. See AICC_Data format
for each message in
section 6.6.
(URL encoded)

Mandatory for all
messages except
GetParam and ExitAU

Additional usage rules for the name/value pairs in the entity-body are as follows:

• All names and values are url-encoded.
• Values must url-decoded prior to use.
• All names are case-insensitive.
• Each of the name/value pairs can be in any sequence
• If an optional value is to be omitted, the name must also be omitted.

The following is an example of a GetParam request message (See section 6.6 for examples of each message type):

GetParam Request Message- example
command=getparam&version=4%2E0&session_id=xyz123

6.4.3 HACP Response Message Format
HACP response message are HTTP response messages with the following properties:

The content-type is “text/plain”.

The data is arranged in format similar to “name/value pairs”. The name is separated from the value by ̀ =' and
name/value pairs are separated from each other by carriage return/linefeed end-of-line markers (e.g. name1=value1{
carriage return/linefeed}name2=value2). The order of the name/value pairs is significant.

AICC - CMI Guidelines for Interoperability

August-16-2004 172 CMI001 Version 4.0

The entity-body is composed of the following name/value pairs (depicted in the table below):

Name/Value pairs in a HACP response message
Name Value Usage/Description Value Data Type

(See Datatypes 9.0) Obligation

error Error Number HacpErrorNumber Mandatory
error_text Error description HacpErrorText Optional
version Version of the CMI Specification. CMIVersionNumber Optional
aicc_data Data sent from the CMI system. See section 6.6.1 CMIFormatINI Mandatory only for

GetParam messages

The following (additional) usage rules apply to response message format:

• Leading and trailing white space (Tab, space) is allowed before and after the name, value and “=” (equals
sign).

• The value data of aicc_data begins as the first non-white space character after the “=” and continues until
the end of the entity-body buffer.

• The value for all other names begins as the first non-white space character after the “=” and continues until
the last non-white character before the carrige return/linefeed.

• The order of the name/value pairs is significant.
• The name, in the name/value pair is not case sensitive.
• If an optional value is to be omitted, the name must also be omitted.

See HACP_RESPONSE in section 10.4 for BNF notation depicting a HACP response message format

The following is an example of a GetParam response message (See section 6.6 for examples of each message type):

GetParam Response Message- example
error=0
error_text=Successful
aicc_data=
[Core]
 Student_ID = XYZ_1234
 Student_Name = Hyde, Jackson Q.
 Lesson_Location = 45
 Credit = CREDIT
 Lesson_Status = INCOMPLETE
 Score =
 Time = 00:04:30

[CORE_LESSON]

my lesson state data – 1111111111111111111000000000000000000000000

1111111111111111111000000000000000000000000 – end my lesson state data

[Core_Vendor]

My Start up parameters
45,67,78,RR
End of My startup parameters

[Evaluation]
Course_ID = {}

[Student_Data]
Mastery_Score = 100

AICC - CMI Guidelines for Interoperability

August-16-2004 173 CMI001 Version 4.0

6.4.4 GetParam Request

The GetParam request message is used by the CMI system to pass data to the AU. It is the only request message
that the CMI returns actual data (in addition to simple message acknowledgement) for the AU to read.

The AU must issue the GetParam request prior to any other messages in an AU session.

The AU obtains the following information from a CMI response to a GetParam request:

• Launch parameters
• Previous state (i.e. “book marking”) information
• Previous status information.

Typically, an AU will issue only one GetParam request during an AU session. However, an AU may issue
additional GetParam requests prior to session end. If an AU issues multiple GetParam requests (during an AU
session), the following rules apply:

Rule #1 - If a GetParam request is issued after a PutParam request, the GetParam response will include
updated values for the following communication data elements (if set by the PutParam request):

Suspend_Data (see section 2.10)
Core.Lesson Location (see section 2.1.4)

All other data elements contained the GetParam response remain static during an AU session.

For a complete list of data elements contained in the GetParam responses message and the format of both request
and response - see section 6.6.1.

6.4.5 PutParam Request

The PutParam request is used to report data to the CMI. The AU must issue a PutParam request containing data to
be passed back to CMI so that the CMI system can update its student performance data (and perform any necessary
display updates or routing activity).

The AU must issue at least one PutParam request prior to end of the AU session.

The CMI receives the following information from the AU via the PutParam Request:

• Status updates
• AU session state (i.e. “Book marking”) information to store

Typically, an AU will issue only one PutParam request during an AU session. However, an AU may issue
additional PutParam requests prior to session end. If an AU issues multiple PutParam requests (during an AU
session), the following rules apply:

Rule #1 - Additional PutParam requests replace the data from prior PutParam requests. Only the data in the
final PutParam request is recorded by the CMI and used to evaluate the AU session results.

For a complete list of data elements contained in the PutParam request message and the format of both the request
and response messages - see section 6.6.2.

6.4.6 Optional Messa ges

In addition to GetParam and PutParam messages, there is a group of optional request messages that an AU may
send. These request messages are as follows:

• PutComments (see section 6.6.3)
• PutObjectives (see section 6.6.4)

AICC - CMI Guidelines for Interoperability

August-16-2004 174 CMI001 Version 4.0

• PutInteractions (see section 6.6.5)
• PutPath (see section 6.6.6)
• PutPerformance (see section 6.6.7)

The following is true for each of the above request messages:

• If the AU supports the data elements defined for any of the above request messages, the AU will send that
request message to the CMI system.

• If CMI receives any of the above messages, it will send response message to the AU even if it does not
support any of the data elements contained in the message.

• If multiple messages are made during the an AU session, all new data is “additive” and stored by the CMI.
Data that is duplicated in multiple messages during an AU session is discarded by the CMI.

6.4.7 ExitAU Message
The AU must issue an ExitAU request to notify the CMI system that the AU session is over. The ExitAU is the last
message that is issued in an AU session. For the format of both the ExitAU request and response messages - see
section 6.6.8.

6.4.8 Error Conditions

Error handling is an AU responsibility. Every response message (provided by the CMI) will contain an error code.
There are 4 HACP error conditions currently defined. They are indicated in the table below. All AU corrective
action is implementation dependent (possible actions depicted below are provided for information only).

HACP Error Conditions
Error_Code Error_Text Description Possible AU corrective

action
0 Successful Message successfully received by the CMI

system
None.

1 Invalid Command The message type was not valid. (See
datatype HacpErrorCommand in section
9.0 for legal vocabulary.)

Try again with a valid message
type. If error persists display
error message to user.

2 Invalid AU password The AU had a Password associated with it
(See Course Elements. AU Password) in
the course structure and the AU failed to
issued a matching value in the request
message.

Display message to user that
password is incorrect and to
contact technical/admin
support.

3 Invalid Session ID The AU did not provide the proper
AICC_SID (see section 6.3) for the AU
session. The AU either was unable to
parse the Launch parameters properly or
the CMI provided an invalid AICC_SID.

Send message again.
If error persists display
message to user that
AICC_SID is incorrect and to
contact technical/admin
support.

Since HACP is based on HTTP/S protocol, HTTP-specific errors may also occur (such as server “time-out”, etc.). In
this case, the HTTP response message may come directly from the HTTP server (instead of a valid HACP response
from the CMI). See RFC1945 for possible HTTP server error codes, their meaning, and the format of the HTTP
error response message.

AICC - CMI Guidelines for Interoperability

August-16-2004 175 CMI001 Version 4.0

6.5 Conformance Requirements

Conformance to the HACP binding may be looked at from two viewpoints, that of the Assignable Unit (AU) and
that of the CMI. There are three levels of obligation described in this binding specification:

• Mandatory
• Optional
• Extension

Obligations for the AU and the CMI are different.

CMI Conformance
Mandatory means that the CMI shall receive all HACP messages, send an acknowledgement of receipt of those
messages (or send data elements requested by the AU), and properly store and use mandatory data elements.

Optional means that a conforming CMI must receive all HACP messages types (and send an acknowledgement of
successful receipt) but may not store or use all data, or optional communication data elements. A conforming CMI
may support many options.

An extension is a data element that is not described in this specification. Extensions may be supported by a CMI.
However, extension data elements may not perform the identical function as data elements defined in this
specification; and extension data elements may not contain the same semantic values as defined data elements. If
extensions are used to duplicate mandatory and optional features, the CMI is non-conforming.

AU Conformance
Mandatory means that the AU shall issue the indicated HACP messages, and properly store and use the mandatory
data elements. Furthermore, the indicated HACP messages will be properly formatted and sent to the CMI system.

Optional means that the AU shall issue the mandatory HACP messages, may issue the optional HACP messages,
and may use or support the indicated data elements in either. Furthermore, all HACP messages will be properly
formatted and sent to the CMI system.

An extension is a data element that is not described in this specification. Extensions may be supported/used by an
AU. However, extension data elements may not perform the identical function as data elements defined in this
specification; and extension data elements may not contain the same semantic values as defined data elements. If
extensions are used to duplicate mandatory and optional features, the AU is non-conforming. Extension data
elements must be passed within existing HACP message types defined.

6.5.1 CMI Responsibilities

Launch and Communication
The CMI system shall do the following to launch an assignable unit (AU):

1. Append launch parameters to the URL location of the AU
2. Redirect the web-browser to the modified URL
3. Listen for AU requests
4. Issue response messages for AU requests

The CMI must support all the data elements described for this binding as mandatory (described in section 6.6). The
CMI may support the optional data elements. The CMI may also support extensions not defined in this specification
as long as those extensions do not duplicate any mandatory or optional features. Additionally, the support of any
extensions must not cause the failure of any AU not using the extensions.

AICC - CMI Guidelines for Interoperability

August-16-2004 176 CMI001 Version 4.0

Sequencing
An assignable unit (AU) may only be launched by a CMI. An AU may not itself launch other assignable units. An
assignable unit must, at a minimum, be able to do the following:

1. Have the ability to be launched from a web browser (as described in sections 6.3)
2. Parse Launch parameters (as described in sections 6.3)
3. Issue the minimum required HACP message requests in the required sequence (as described in sections 6.3

and 6.4).

Flow control – moving from one AU to another – is assumed to be the responsibility of the CMI and not the AU
itself. This is conceptually important because AU reuse cannot really happen if the AU has embedded information
that is context specific to the course. In this context, flow control means that the decision of what AU will next be
presented to the student is made by the CMI. (This recognizes that some AU’s may make decisions—that is, branch
– within themselves, but that kind of internal flow is hidden from the CMI.)

The determination of which AU(s) the student is routed to is determined solely by the CMI and is defined in large
part by the Course Structure description (Chapter 3). Chapter 3 defines information about the AU that is context
specific to the course (e.g., the default sequence of AU’s, and prerequisites or completion requirements that might
alter the delivery path.)

6.5.2 Assignable Unit (AU) Responsibilities

Launch and Communication
An assignable unit must, at a minimum, be able to do the following:

1. Have the ability to be launched from a web browser (as described in sections 6.3)
2. Parse Launch parameters (as described in sections 6.3)
3. Issue the minimum required HACP message requests in the required sequence (as described in

sections 6.3 and 6.4).
4. Support all the following communication data elements (listed in the tables below)

GetParam (Response) – AU mandatory data elements

Group Name or Keyword Communication Data Model Name Section

PutParam (Request) – AU mandatory data elements
Group Name or Keyword Communication Data Model Name Section

[Core] Core 2.1
 Lesson_Location Core.Lesson Location 2.1.4
 Lesson_Status Core.Lesson Status 2.1.6
 Score Core.Score 2.1.10
 Time Core.Session_Time 2.1.12

The AU must support all the data elements described for this binding as mandatory (above). The AU may support
the optional data elements. The AU may also support extensions not defined in this specification as long as those
extensions do not duplicate any mandatory or optional features. Additionally, the support of any extensions must
not cause the failure of any CMI not using the extensions.

Sequencing
An AU may not itself launch other assignable units

AICC - CMI Guidelines for Interoperability

August-16-2004 177 CMI001 Version 4.0

6.6 Communication Data Model Mapping

This section contains the mapping of the communication data model elements (defined in section 2.0) to the HACP
binding. The contents of the HACP request and response messages are defined in this section. The request
messages used by the AU for communication are as follows:

• GetParam
• PutParam
• PutComments
• PutObjectives
• PutPath
• PutInteractions
• PutPerformance

The following is defined for each of the above message types:
• A description of the message’s purpose
• A list of communication data model elements used
• The format of the data contained in AICC_DATA name/value pair (if any)
• An example of request and response messages

6.6.1 GetParam (Messages)

Purpose
The GetParam request is used by the CMI system to pass data to the AU. (See section 6.4.1).

Data Model Elements
The following table describes the Group and Keywords used by the GetParam response message with corresponding
data model names, references, and Mandatory/Required designations. For specific usage of a data element refer to
the corresponding section in the Chapter 2.0 Communication Data Model. Note that n indicates an array index.

Data Model Elements (Response Message)
Group Names and
Keywords Communication Data Model Name Section CMI

Obligation
[Core] Core 2.1 Mandatory
 Student_ID Core.Student Id 2.1.1 Mandatory
 Student_Name Core.Student Name 2.1.2 Mandatory
 Lesson_Location Core.Lesson Location 2.1.4 Mandatory
 Credit Core.Credit 2.1.5 Mandatory
 Lesson_Status Core.Lesson Status 2.1.6 Mandatory
 Core.Entry 2.1.8 Mandatory
 Score Core.Score 2.1.10 Mandatory
 Core.Score.Raw 2.1.10 Mandatory
 Core.Score.Max 2.1.10 Optional
 Core.Score.Min 2.1.10 Optional
 Time Core.Total_Time 2.1.12 Mandatory
 Lesson_Mode Core.Lesson Mode 2.1.13 Optional
[Core_Lesson] Suspend Data 2.1 Mandatory
[Core Vendor] Launch Data 2.3 Mandatory
[Comments] Comments From LMS 2.6 Optional
[Evaluation] Evaluation 2.7 Optional
 Course_ID Evaluation.Course ID 2.7.2 Optional
[Objectives_Status] Objectives 2.8 Optional
 J_ID.n Objectives.ID 2.8.1 Optional
 J_Score.n Objectives.Score 2.8.2 Optional
 Objectives.Score.Raw 2.8.2 Optional
 Objectives.Score.Max 2.8.2 Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 178 CMI001 Version 4.0

Group Names and
Keywords Communication Data Model Name Section CMI

Obligation
 Objectives.Score.Min 2.8.2 Optional
 J_Status.n Objectives.Status 2.8.3 Optional
[Student_Data] Student Data 2.9 Optional
 Attempt_Number Student Data.Attempt Number 2.9.1 Optional
 Mastery_Score Student Data.Mastery Score 2.9.3 Optional
 Max_Time_Allowed Student Data.Max Time Allowed 2.9.3 Optional
 Time_Limit_Action Student Data.Time Limit Action 2.9.4 Optional
 Student Data. 2.9.7 Optional
 Score.n Student Data.Sessions Journal.Lesson Score 2.9.7.1 Optional
 .Raw 2.9.7.1 Optional
 .Max 2.9.7.1 Optional
 .Min 2.9.7.1 Optional
 Lesson_Status.n Student Data.Sessions Journal.Lesson

Status
2.9.7.2 Optional

[Student_Demographics] Student Demographics 2.13 Optional
 City Student Demographics.City 2.13.1 Optional
 Class Student Demographics.Class 2.13.2 Optional
 Company Student Demographics.Company 2.13.3 Optional
 Country Student Demographics.Country 2.13.4 Optional
 Experience Student Demographics.Experience 2.13.5 Optional
 Familiar_Name Student Demographics.Familiar Name 2.13.6 Optional
 Instructor_Name Student Demographics.Instructor Name 2.13.7 Optional
 Job_Title Student Demographics.Title 2.13.12 Optional
 Native_Language Student Demographics.Native Language 2.13.8 Optional
 State Student Demographics.State 2.13.9 Optional
 Street_Address Student Demographics.Street Address 2.13.10 Optional
 Telephone Student Demographics.Telephone 2.13.11 Optional
 Years_Experience Student Demographics.Years Experience 2.13.13 Optional
[Student_Preferenc es] Student Preference 2.1 Optional
 Audio Student Preference.Audio 2.10.1 Optional
 Language Student Preference.Language 2.10.2 Optional
 Lesson_Type Student Preference.Lesson Type 2.10.3 Optional
 Speed Student Preference.Speed 2.10.4 Optional
 Text Student Preference.Text 2.10.5 Optional
 Text_Color Student Preference.Text Color 2.10.6 Optional
 Text_Location Student Preference.Text Location 2.10.7 Optional
 Text_Size Student Preference.Text Size 2.10.8 Optional
 Video Student Preference.Video 2.10.9 Optional
 Window.1 Student Preference.Windows 2.10.10 Optional

AICC_Data Format (Request Message)
Not Applicable for GetParam request messages. If the aicc_data name/value pair is present in GetParam request
messages, it is ignored by the CMI.

AICC_Data Format (Response Message)
The GetParam response message is formatted as datatype CMIFormatINI (See section 9.0 - Datatypes). All
mandatory data elements (listed in the table above) must be included.

Example
An example of a typical set of GetParam request/response messages are shown below:

GetParam Request Message- example
command=GetParam&version=4.0&session_id=xyz123

GetParam Response Message - example
error=0
error_text=Successful
aicc_data=; line 1
; line 2
; line 3
[Core]

AICC - CMI Guidelines for Interoperability

August-16-2004 179 CMI001 Version 4.0

GetParam Response Message - example
 ; Comment
 Student_ID = XYZ_1234
 Student_Name = Hyde, Jackson Q.
 Lesson_Location = 45
 Credit = CREDI
 Lesson_Status = INCOMPLETE
 Score =
 Time = 0000:04:30.34
 Lesson_Mode = Normal

; Core_lesson is free-form group
[CORE_LESSON]

my lesson state data – 1111111111111111111000000000000000000000000

1111111111111111111000000000000000000000000 – end my lesson state data
; Core_vendor is also a free-form group
[Core_Vendor]

My Start up parameters
45,67,78,RR
End of My startup parameters

[Evaluation]
Course_ID = {}

[Student_Data]
Mastery_Score = 100

6.6.2 PutParam (Messages)

Purpose
The PutParam request is used by the AU to pass (mandatory and optional) data to the CMI (See section 6.4.2).

Data Model Elements
The following table describes the Group and Keywords used by the PutParam request with corresponding data
model names, references, and Mandatory/Required designations. For specific usage of a data element refer to the
corresponding section in the Chapter 2.0 Communication Data Model . Note that n indicates an array index.

Data Model Elements (Request Message)
Group Names and

Keywords Communication Data Model Name Section CMI Obligation
[Core] Core 2.1 Mandatory
 Lesson_Location Core.Lesson Location 2.1.4 Mandatory
 Lesson_Status Core.Lesson Status 2.1.6 Mandatory
 Core.Exit 2.1.7 Mandatory
 Score Core.Score 2.1.10 Mandatory
 Core.Score.Raw 2.1.10 Mandatory
 Core.Score.Max 2.1.10 Mandatory
 Core.Score.Min 2.1.10 Mandatory
 Time Core.Session_Time 2.1.12 Mandatory
[Core_Lesson] Suspend Data 2.1 Mandatory
[Comments] Comments From Learner 2.4 Optional
[Objectives_Status] Objectives 2.8 Optional
 J_ID.n Objectives.ID 2.8.1 Optional
 J_Score.n Objectives.Score 2.8.2 Optional
 Objectives.Score.Raw 2.8.2 Optional
 Objectives.Score.Max 2.8.2 Optional
 Objectives.Score.Min 2.8.2 Optional
 J_Status.n Objectives.Status 2.8.3 Optional
[Student_Data] Student Data 2.9 Optional
 Tries_During_Lesson Student Data.Tries During Lesson 2.9.5 Optional

AICC - CMI Guidelines for Interoperability

August-16-2004 180 CMI001 Version 4.0

Group Names and
Keywords Communication Data Model Name Section CMI Obligation

 Try_Score.n Student Data.Tries.Try_Score 2.9.2 Optional
 Try_Time.n Student Data.Tries.Try_Time 2.9.2 Optional
 Try_Status.n Student Data.Tries.Status 2.9.2 Optional
[Student_Preferences] Student Preference 2.1 Optional
 Audio Student Preference.Audio 2.10.1 Optional
 Language Student Preference.Language 2.10.2 Optional
 Lesson_Type Student Preference.Lesson Type 2.10.3 Optional
 Text Student Preference.Text 2.10.5 Optional
 Text_Color Student Preference.Text Color 2.10.6 Optional
 Text_Location Student Preference.Text Location 2.10.7 Optional
 Text_Size Student Preference.Text Size 2.10.8 Optional
 Video Student Preference.Video 2.10.9 Optional
 Window.n Student Preference.Windows 2.10.10 Optional

AICC_Data Format (Request Message)
The PutParam request message is formatted as datatype CMIFormatINI (See section 9.0 - Datatypes). All
mandatory data elements (listed in the table above) must be included. All data is url-encoded and must be decoded
prior to interpretation.

AICC_Data Format (Response Message)
Not Applicable for PutParam response messages. If the aicc_data name/value pair is present in PutParam response
messages, it is ignored by the AU.

Example
An example of a typical PutParam (request/reponse) message sequence and AICC_DATA are show below:

AICC_DATA example (for a PutParam request)
prior to URL-encoding

;
; Finish File
;
[Core]
 Lesson_Location = 87
 Lesson_Status = C
 Score =
 Time = 00:02:30

[CORE_LESSON]

my lesson state data – 1111111111111111111000000000000000001110000

111111111111111111100000000000111000000000 – end my lesson state data

[COMMENTS]

<1><L.Slide#2> This slide has the fuel listed in the wrong units <e.1>

PutParam Request Message- example
command=PutParam&version=4.0&session_id=345678&AICC_data=%3B%0D%0A%3B%20Finish%20File%0
D%0A%3B%0D%0A%5BCore%5D%0D%0A%20%20%20Lesson_Location%20%3D%2087%0D%0A%20%20%20Lesson_S
tatus%20%3D%20C%0D%0A%20%20%20Score%20%3D%20%0D%0A%20%20%20Time%20%3D%2000%3A02%3A30%0D
%0A%0D%0A%5BCORE_LESSON%5D%0D%0A%0D%0Amy%20lesson%20state%20data%20%2D%2011111111111111
11111000000000000000001110000%0D%0A%0D%0A%0D%0A1111111111111111111000000000001110000000
00%20%2D20end%20my%20lesson%20state%20data%0D%0A%0D%0A%5BCOMMENT%5D%0D%0A%0D%0A%3C1%3E%
3CL.Slide%232%3E%20This%20slide%20has%20the%20fuel%20listed%20in%20the%20wrong%20units%
20%3Ce.1%3E%0D%0A

AICC - CMI Guidelines for Interoperability

August-16-2004 181 CMI001 Version 4.0

PutParam Response Message - example

error=0
error_text=Successful

6.6.3 PutComments (Messages)

Purpose
The PutComments request sends data containing freeform feedback fro m the student (recorded by the AU) to the
CMI. It is a duplicate of the [Comments] group that is passed to the CMI system in PutParam request(s).

NOTE: If a CMI system receives data from the AU in both [Comments] group (PutParam request) and the
PutComments request in the same AU session, then CMI must retain the data from the PutComments request and
discard the [Comments] group data from the PutParam request(s).

Data Model Elements
The following table identifies the Comment File’s Fields, Data Model Na mes, and Data Model Section reference.

Data Model Elements (Request Message)
CSV File Field Identifier Communication Data Model Name Section
Course_ID Itemized Comments From Learner.Course_ID 2.5.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Itemized Comments From Learner.Lesson_ID 2.5.5
Date Itemized Comments From Learner.Date 2.5.3
Time Itemized Comments From Learner.Time 2.5.7
Location Itemized Comments From Learner.Location 2.5.6
Comment Itemized Comments From Learner.Content 2.5.1

AICC_Data Format (Request Message)
The AICC_DATA value is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 –
Datatypes for a detailed description of formatting rules). All CSV File Field Identifiers listed above must be
present in the header row, even if a specific field is not supported/used by the CMI. All unsupported data elements
are represented as empty strings. Note that field identifiers identify field position (i.e. “columns”) in a record (i.e.
“row”) and can be in any order. Custom fields may be added to support vendor specific extensions but these must
have corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.

The value of AICC_DATA is url-encoded and must be decoded prior to interpretation.

AICC_Data Format (Response Message)
Not Applicable for PutComments response messages. If the aicc_data name/value pair is present in PutComments
response messages, it is ignored by the AU.

Example
An example of a typical PutComments (request/reponse) message sequence and AICC_DATA are show below:

AICC_DATA example (for a PutComments request) prior to URL-encoding
"course_id","student_id","lesson_id","date","time","location", "comment"
"A380FT-1","jqh2003","APU1","2006/01/15",00:14:23 ,frame3, "I think that the word received is
not spelled correctly. The reason I'm not sure is because of the colors used for the
background and foreground text colors. Purple on orange is really hard to read sometimes."
"A380FT-1","jqh2003","APU1","2006/01/15",00:14:36, frame16, "Why did you change colors? I was
just getting used to purple on orange."

PutComments Request Message- example

AICC - CMI Guidelines for Interoperability

August-16-2004 182 CMI001 Version 4.0

Aicc_data=%22course_id%22%2C%22student_id%22%2C%22lesson_id%22%2C%22date%22%2C%22time%22%2C%22
location%22%2C%20%22comment%22%0D%0A%22A380FT%2D1%22%2C%22jqh2003%22%2C%22APU1%22%2C%222006%2F
01%2F15%22%2C00%3A14%3A23%20%2Cframe3%2C%20%22I%20think%20that%20the%20word%20received%20is%20
not%20spelled%20correctly.%20The%20reason%20I%27m%20not%20sure%20is%20because%20of%20the%20col
ors%20used%20for%20the%20background%20and%20foreground%20text%20colors.%20%20%20Purple%20on%20
orange%20is%20really%20hard%20to%20read%20sometimes.%22%0D%0A%22A380FT%2D1%22%2C%22jqh2003%22%
2C%22APU1%22%2C%222006%2F01%2F15%22%2C00%3A14%3A36%2C%20frame16%2C%20%22Why%20did%20you%20chan
ge%20colors%3F%20I%20was%20just%20getting%20used%20to%20purple%20on%20orange.%22&version=4.0&c
ommand=PutComments&session_id=McKim109

PutComments Response Message - example

error=0
error_text=Successful

6.6.4 PutInteractions (Messages)

Purpose
All of the items in this file are related to a recognized and recorded input from the student (recorded by the AU).
Normally, the interactions recorded are student responses to a question. (See sections listed in table below for
description of the data elements recording student interactions)

Data Model Elements
The following table identifies the Interactions File’s Fields, Data Model Names, and Data Model Section reference.

Data Model Elements (Request Message)
CSV File Field Idenifier Communication Data Model Name Section
Course_ID Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Lesson_ID 2.14
Date Interactions.Date 2.11.3
Time Interactions.Time 2.11.4
Interaction ID Interactions.ID 2.11.1
Objective ID Interactions.Objectives 2.11.2
Type Interaction Interactions.Type 2.11.5
Correct Response Interactions.Correct Responses 2.11.6
Student Response Interactions.Student Response 2.11.8
Result Interactions.Result 2.11.9
Weighting Interactions.Weighting 2.11.7
Latency Interactions.Latency 2.11.10

AICC_Data Format (Request Message)
The AICC_DATA value is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 –
Datatypes for a detailed description of formatting rules). All CSV File Field Identifiers listed above must be
present in the header row, even if a specific field is not supported/used by the CMI. All unsupported data elements
are represented as empty strings. Note that field identifiers identify field position (i.e. “columns”) in a record (i.e.
“row”) and can be in any order. Custom fields may be added to support vendor specific extensions but these must
have corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.

The value of AICC_DATA is url-encoded and must be decoded prior to interpretation.

AICC_Data Format (Response Message)
Not Applicable for PutInteractions response messages. If the aicc_data name/value pair is present in PutInteractions
response messages, it is ignored by the AU.

Example
An example of a typical PutInteractions (request/response) message sequence and AICC_DATA are show below:

AICC - CMI Guidelines for Interoperability

August-16-2004 183 CMI001 Version 4.0

AICC_DATA example (for a PutInteractions request) prior to URL-encoding
"course_id","student_id","lesson_id","date","time","interaction_id","objective_id",
"type_interaction","correct_response","student_response","result","weighting","latency"
"A340ft-2","jqh085","APU1","2004/01/15","15:14:23",37,ft1016,C,A,C,W,, 00:00:3
"A340ft-2","wam016","APU1","2004/01/15","15:14:23",38,ft2223,t,t,t,,, 00:00:01
"A340ft-2","dag085","APU1","2004/01/15","15:14:23",39,ft1134,C,B,B,C,, 00:00:02
"A340ft-2","trd018","APU1","2004/01/15","15:14:23",40,ft1156,C,C,C,C,, 00:00:04

PutInteractions Request Message- example
Command=PutInteractions&AICC_data=%22course_id%22%2C%22student_id%22%2C%22lesson_id%22%2C%
22date%22%2C%22time%22%2C%22interaction_id%22%2C%22objective_id%22%2C%22type_interaction%2
2%2C%22correct_response%22%2C%22student_response%22%2C%22result%22%2C%22weighting%22%2C%22
latency%22%0D%0A%22A340ft%2D2%22%2C%22jqh085%22%2C%22APU1%22%2C%222004%2F01%2F15%22%2C%221
5%3A14%3A23%22%2C37%2Cft1016%2CC%2CA%2CC%2CW%2C%2C%2000%3A00%3A3%0D%0A%22A340ft%2D2%22%2C%
22wam016%22%2C%22APU1%22%2C%222004%2F01%2F15%22%2C%2215%3A14%3A23%22%2C38%2Cft2223%2Ct%2Ct
%2Ct%2C%2C%2C%2000%3A00%3A01%0D%0A%22A340ft%2D2%22%2C%22dag085%22%2C%22APU1%22%2C%222004%2
F01%2F15%22%2C%2215%3A14%3A23%22%2C39%2Cft1134%2CC%2CB%2CB%2CC%2C%2C%2000%3A00%3A02%0D%0A%
22A340ft%2D2%22%2C%22trd018%22%2C%22APU1%22%2C%222004%2F01%2F15%22%2C%2215%3A14%3A23%22%2C
40%2Cft1156%2CC%2CC%2CC%2CC%2C%2C%2000%3A00%3A04&Version=4.0&session_id=xavier123

PutInteractions Response Message - example
error=0
error_text=Successful

6.6.5 PutObjectives (Messages)

Purpose
This file contains information on how the student has performed on objectives related to the AU. The performance
may be related to previous sessions in the AU, or to the student user’s performance in other AU’s (in the same
course) related to the same objectives. These objectives are only those associated with the current launching AU,
not all the objectives in the course or curriculum.

Data Model Elements
The following table identifies the Objective Status File’s Fields, Data Model Names, and Data Model Section
reference.

Data Model Elements (Request Message)
CSV File Field Idenifier Communication Data Model Name Section
Course_ID Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Lesson_ID 2.14
Date Objectives.Date 2.8.4
Time Objectives.Time 2.8.5
Objective ID Objectives.ID 2.8.1
Score Objectives.Score 2.8.2
Status Objectives.Status 2.8.3
Mastery Time Objectives.Mastery Time 2.8.6

AICC_Data Format (Request Message)
The AICC_DATA value is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 –
Datatypes for a detailed description of formatting rules). All CSV File Field Identifiers listed above must be
present in the header row, even if a specific field is not supported/used by the CMI. All unsupported data elements
are represented as empty strings. Note that field identifiers identify field position (i.e. “columns”) in a record (i.e.
“row”) and can be in any order. Custom fields may be added to support vendor specific extensions but these must

AICC - CMI Guidelines for Interoperability

August-16-2004 184 CMI001 Version 4.0

have corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.

The value of AICC_DATA is url-encoded and must be decoded prior to interpretation.

AICC_Data Format (Response Message)
Not Applicable for PutObjectives response messages. If the aicc_data name/value pair is present in PutObjectives
response messages, it is ignored by the AU.

Example
An example of a typical PutObjectives (request/reponse) message sequence and AICC_DATA are show below:

AICC_DATA example (for a PutObjectives request) prior to URL-encoding
COURSE_ID, STUDENT_ID, LESSON_ID, DATE, TIME, OBJECTIVE_ID, SCORE, STATUS, MASTERY_TIME
"MD80-2","STU1009","APU1","2004/01/15","10:14:23","APU1684",3,, "passed","00:02:37"

PutObjectives Request Message- example

SESSION_ID=LEZAT1993&COMMAND=PUTOBJECTIVES&AICC_DATA=COURSE_ ID%2C%20
STUDENT_ID%2C%20LESSON_ID%2C%20DATE%2C%20TIME%2C%20OBJECTIVE_ID%2C
%20SCORE%2C%20STATUS %2C%20MASTERY_TIME%0D%0A%22MD80%2D2%22%2C%22
STU1009%22%2C%22APU1 %22%2C%222004%2F01%2F15%22%2C%2210%3A14%3A23%22%2
C%22APU1684%22%2C3%2C%2C%20%22PASSED%22%2C%2200%3A02%3A37%22&VERSIO
N=4.0

PutObjectives Response Message - example
error=0
error_text=Successful

6.6.6 PutPath (Messages)

Purpose
To provide a mechanism to record the “paths” a student use took during AU session(s). The paths recorded are
generally the order in which the student navigates through the AU. (See sections listed in table below for
descriptions of the data elements recording path information)
.

Data Model Elements
The following table identifies the PutPath request message Fields, Data Model Names, and Data Model Section
reference.

Data Model Elements (Request Message)
CSV File Field Identifier Communication Data Model Name Section
Course_ID Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Lesson_ID 2.14
Date Paths.Date 2.12.2
Time Paths.Time 2.12.3
Element Location Paths.Location ID 2.12.1
Status Paths.Status 2.12.4
Why_Left Paths.Why Left 2.12.5
Time_in_Element Paths.Time in Element 2.12.6

AICC - CMI Guidelines for Interoperability

August-16-2004 185 CMI001 Version 4.0

AICC_Data Format (Request Message)
The AICC_DATA value is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 –
Datatypes for a detailed description of formatting rules). All CSV File Field Identifiers listed above must be
present in the header row, even if a specific field is not supported/used by the CMI. All unsupported data elements
are represented as empty strings. Note that field identifiers identify field position (i.e. “columns”) in a record (i.e.
“row”) and can be in any order. Custom fields may be added to support vendor specific extensions but these must
have corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.

The value of AICC_DATA is url-encoded and must be decoded prior to interpretation.

AICC_Data Format (Response Message)
Not Applicable for PutPath response messages. If the aicc_data name/value pair is present in PutPath response
messages, it is ignored by the AU.

Example
An example of a typical PutPath (request/reponse) message sequence and AICC_DATA are show below:

AICC_DATA example (for a PutPath request) prior to URL-encoding
"course_id","student_id","lesson_id","date","time","element_location","status","why_left","ti
me_in_element"
"course6","stu2310","first1","2003/06/05","14:10:31","page1","P","S","00:00:24"
"course6","stu2310","first1","2003/06/05","14:10:55"," page2","P","S","00:01:06"
"course6","stu2310","first1","2003/06/05","14:12:01"," page3","I","L","00:02:24"
"course6","stu2310","first1","2003/06/05","14:13:25"," page4","P","S","00:00:54"
"course6","stu2310","first1","2003/06/05","14:14:19"," page5","P","L","00:02:40"
"course6","stu2310","first1","2003/06/05","14:16:59"," page6","P","S","00:03:03"
"course6","stu2310","first1","2003/06/05","14:20:02"," page7","P","E","00:02:12"

PutPath Request Message

aicc_data=%22page2%22%2C%22P%22%2C%22S%22%2C%2200%3A01%3A06%22%0D%0A%22course6%22%2C%22stu231
0%22%2C%22first1%22%2C%222003%2F06%2F05%22%2C%2214%3A12%3A01%22%2C%22%20page3%22%2C%22I%22%2C
%22L%22%2C%2200%3A02%3A24%22%0D%0A%22course6%22%2C%22stu2310%22%2C%22first1%22%2C%222003%2F06
%2F05%22%2C%2214%3A13%3A25%22%2C%22%20page4%22%2C%22P%22%2C%22S%22%2C%2200%3A00%3A54%22%0D%0A
%22course6%22%2C%22stu2310%22%2C%22first1%22%2C%222003%2F06%2F05%22%2C%2214%3A14%3A19%22%2C%2
2%20page5%22%2C%22P%22%2C%22L%22%2C%2200%3A02%3A40%22%0D%0A%22course6%22%2C%22stu2310%22%2C%2
2first1%22%2C%222003%2F06%2F05%22%2C%2214%3A16%3A59%22%2C%22%20page6%22%2C%22P%22%2C%22S%22%2
C%2200%3A03%3A03%22%0D%0A%22course6%22%2C%22stu2310%22%2C%22first1%22%2C%222003%2F06%2F05%22%
2C%2214%3A20%3A02%22%2C%22%20page7%22%2C%22P%22%2C%22E%22%2C%2200%3A02%3A12%22&
command=PutPath&version=4.0&session_id=345699&

PutPath Response Message - example
error=0
error_text=Successful

6.6.7 PutPerformance (Messages)

Purpose
To record simulation-specific data from AU session(s) for later analysis.

Data Model Elements
Not applicable. PutPerformance data is developer-defined.

AICC_Data Format (Request Message)
The formatting of the data is developer-defined. All data is url-encoded and must be decoded prior to interpretation.

AICC - CMI Guidelines for Interoperability

August-16-2004 186 CMI001 Version 4.0

AICC_Data Format (Response Message)
Not Applicable for PutPerformance response messages. If the aicc_data name/value pair is present in
PutPerformance response messages, it is ignored by the AU.

Example
Not applicable.

6.6.8 ExitAU (Messages)

Purpose
To notify the CMI of AU session termination

Data Model Elements
Not Applicable.

AICC_Data Format (Request Message)
Not Applicable for ExitAU request messages. If the aicc_data name/value pair is present in ExitAU request
messages, it is ignored by the CMI.

AICC_Data Format (Response Message)
Not Applicable for ExitAU response messages. If the aicc_data name/value pair is present in ExitAU response
messages, it is ignored by the AU.

Example

ExitAU Request Message- example
command=ExitAU&version=4.0&session_id=xyz123

ExitAU Response Message - example
Error=0
Error_text=Successful

AICC - CMI Guidelines for Interoperability

August-16-2004 187 CMI001 Version 4.0

7.0 Communicating via API (The API Binding)
This chapter defines Application Programming Interface (API) binding to the communication data model in Chapter
2.0. It defines the following:

• The environment in which the API operates
• How the CMI launches Assignable Units (AUs)
• How the API is used by AUs to communicate with the CMI system.
• Conformance requirements for this binding.
• Which elements from the data model described in Chapter 2.0 may be used by the API.

Although some of the data elements in the communication data model may have different names in the API binding,
there are no new data elements appearing in this chapter.

7.1 Conceptual Model
In the API binding, the AU will communicate using the widely supported JavaScript calling conventions. JavaScript
was selected as the method for implementing this API since nearly all browser platforms natively support it. This
binding defines several calls, the data in these calls, and the format of that data.

The figure below illustrates what is standardized. Note that the communication of the JavaScript object with the
CMI is outside the scope of this specification. Implementations of the communications of the JavaScript object with
the CMI may vary from product to product.”

The Assignable Unit (AU) initiates all communication (after it is launched by the CMI). This communication model
makes no provision for communication initiated by the CMI to the AU.

7.2 Operating Environment
The operating environment for this binding is a Web-Browser with JavaScript support.

Java
Script

API Calls

AU

Standardized
Calls and

Standardized
Data

CMI

API
Implementation

Assignable Unit (AU) environment

AICC - CMI Guidelines for Interoperability

August-16-2004 188 CMI001 Version 4.0

7.3 Launching an Assignable Unit

Environment
As depicted in the conceptual model, a CMI implements an API in the assignable unit’s environment. The AU’s
implementer incorporates in the AU the ability to discover and communicate with an API implementation. A CMI or
the front-end to an AU (assignable unit) repository (local or remote) provides an interface for the learner. The CMI
either delivers an assignable unit to the learner and starts it, or launches a URI to initiate the AU. An assignable unit
has integrated procedures to locate an API implementation.

Sequence of operations
The CMI initiates the launch of an assignable unit. As the AU starts up, it searches for the API implementation.
After verifying that the API implementation is accessible in the AU’s environment, the AU invokes the API
implementation through the instance that has been located.

The AU might not communicate further with the API implementation for some time. All subsequent communication
is part of this communication session until it is ended. The AU may request data through the API implementation.
Through the API implementation, the CMI returns the requested data or a message identifying an error condition.

While running, the AU may send or set data model data elements for storage across communication sessions. The
CMI may use data elements or other data in reports on a learner's status with that AU. The AU may elicit a more
detailed error message. The AU may continue communicating in this fashion, requesting and sending data until a
learner finishes a AU, a learner terminates the communication session before finishing, or the communication
session is abnormally terminated (e.g., loss of power, system crash). In the first two cases, the AU tells the API
implementation that it is closing the communication session. In the last case, the CMI will not receive a signal
through the API implementation that the communication session is closed. CMI behavior is this case is currently
undefined in this Guideline.

A summary of the normal sequence of operations is as follows:

1. The CMI instantiates the API implementation in the assignable unit DOM and initiates launch of an
assignable unit.

2. The AU locates the API instance. (Note—This is a required action of the AU.)
3. The AU invokes the LMSInitialize communication session method of the API implementation prior to

calling any other method. (Note—The use of this session method is a required action of the AU.)
4. If the AU invokes one or more data-retrieval requests through the API instance, the API returns the data or,

in the case of an error, an empty string (""). The API sets an appropriate error status, either "0" for no error
or an error code. The error status can be retrieved by the AU on request. Calls to retrieve data (data-transfer
methods) are optional actions of the AU.

5. If the AU invokes one or more data-storage requests (LMSSetValue) through the API instance, the API
either caches the data to send to the CMI later, or attempts to send the data to the CMI immediately. In
either case the API instance returns an acknowledgement, either "true" or, in the case of an error, "false".
The API sets an appropriate error status, either "0" for no error or an error code. The error status can be
retrieved by the AU on request. Calls to store data (data-transfer methods) are optional actions of the AU.

6. If the AU invokes one or more of the predefined error handling methods through the API instance, the CMI
responds appropriately with data or messages through the API instance. Error handling methods are
optional actions of the AU. The API instance returns a value or message if a call is made.

7. The AU invokes the termination method of the API instance. (Note—The use of this session method is a
required action of the AU.)

8. The API instance rejects any attempt by this instance of the AU to reinitialize the communication session.

AICC - CMI Guidelines for Interoperability

August-16-2004 189 CMI001 Version 4.0

7.4 Method of Communication

Communication between AU and CMI is accomplished by the AU invoking function calls (or methods) from the
API object. The JavaScript API includes three kinds of methods:

• Session methods – used to mark the beginning and the end of communication between a the AU object and
an API implementation.

• Data-transfer methods – used to transfer data model values between a the AU object and an API
implementation.

• Error handling methods – used for auxiliary communications (e.g. error handling) between a the AU object
and the API implementation.

The set of API function calls or methods consists of the following:

Session Methods
LMSInitialize(“”)
LMSFinish(“”)

Data-transfer Methods
LMSGetValue(parameter)
LMSSetValue(parameter, value)
LMSCommit(parameter)

Error handling Methods
LMSGetLastError(“”)
LMSGetErrorString(parameter)
LMSGetDiagnostic(parameter)

7.4.1 Parameters
The parameters in the API data-transfer methods have two or more parts. Each part is separated by a period “.”
(dot). The first part is always the name of the data model. The second part is always the name of an element in the
data model. Subsequent parts are either the name of an element in the data model, or a number, which refers to a
location within the preceding data element which, is an array.

• datamodel.element
• datamodel.element.element
• datamodel.element.number.element
• datamodel.element.number.element.number

Data model indicates which data model the value or return value is based on. In this specification, the data model is
always “CMI”.

The highest level of element is sometimes referred to as a Group in the CMI data model. In this document the word
"category" is used interchangeably with the word "group." Each group element has a unique name in the CMI data
model.

Element refers to a specific name in the CMI data model. Each element that is a sub-element or member of another
element is referred to as a keyword or a field. Some sub-elements may have the same name. To enable precise
identification, the element (sub-element) name must always be accompanied by the name of the group in which it
appears.

Number is a simple integer that refers to the location in an array, if the named value is in an array. The first element
in an array is 0.

AICC - CMI Guidelines for Interoperability

August-16-2004 190 CMI001 Version 4.0

7.4.2 API General Rules
The following list summarizes the usage rules for the API.

• The function or method names are all case sensitive, and must always be expressed exactly as shown
above.

• When a function's parameter is a data model element name, it is case sensitive. All data model element
names are lower case.

• The first symbol in the data element name identifies the data model. For example, "cmi" indicates the
AICC/CMI data model (described in this document). This expands the functionality of these API's by
allowing the same API to be used with other data models. (However, the use of other data models is outside
the scope of this document).

• There are three reserved keywords. These are all lower case and proceeded by an underscore.
§ _version
§ _children
§ _count

• When LMSGetValue is executed, it returns the last set value if there was one.

7.4.3 Arrays – Handling Lists
There are several data elements that appear in a list or an array. An example of this would be interactions. There
may be more than one interaction covered in an AU, and a student may be allowed to perform an interaction more
than once.

To get or set values in a list, the index number may be used. The only time an index number may be omitted is
when there is only one member in a potential list. Index numbering starts at 0. If a value is to be appended to the
list, the Assignable Unit must know the last index number used.

All new array elements shall be added sequentially. The assignable unit shall not skip array numbers or leave empty
array elements when constructing a list of array values.

The _count keyword can be used to determine the current number of records in the list. For instance, to determine
the number of interactions records currently recorded, the following API would be used:

LMSGetValue("cmi.interactions._count")

Elements in a list are referred to with a dot-number notation (represented by .n). For instance the value of the status
element in the first interaction in a AU would be referred to as "cmi.interactions.0.result ". The result element in
the fourth interaction would be referred to as "cmi.interactions.3.result". If a student experienced the first interaction
twice, there could be two results associated with the first interaction. These would be identified as
"cmi.interactions.0.result" and "cmi.interactions.0.result".

7.4.4 Session Methods

Session methods are used to initiate and terminate data communication between an API implementation and a single
instance of an AU object (assignable unit) during a single communication session.

The API implementation may have one of three communication states. Each of these communications states are
mutually exclusive and are as follows:

1. Not initialized
2. Running
3. Terminated:

The initial API communication state (before the AU object is launched) shall be "not initialized".

Session Methods
LMSInitialize Description: This function is used to initiate communication between an assignable unit and

an API implementation. It indicates to the API adapter that the assignable unit is going to

AICC - CMI Guidelines for Interoperability

August-16-2004 191 CMI001 Version 4.0

Session Methods
communicate with the CMI. It allows the CMI to handle CMI specific initialization issues. It is
called by the assignable unit before it can call any other API function.

Behavior notes
When the communication state is “not initialized” and initialization of communication succeeds,
the API instance
sets the communication state to "running";
sets the error state to "0" (No error); and
returns "true" to the calling content object.
1. When the communication state is "not initialized" and initialization of communication fails,

the API instance
a) makes no change to the communication state;
b) sets the error state to "101" (General exception); and
c) returns "false" to the calling content object.

2. When the communication state is "running", the API instance
a) makes no change to the communication state;
b) sets the error state to "101" (General exception); and
c) returns "false" to the calling content object.

3. When the communication state is "terminated", the API instance
a) makes no change to the communication state;
b) sets the error state to "301" (Not initialized); and
c) returns "false" to the calling content object.

Note: Additional and more specific error codes will be added in later versions of this standard.

Syntax:
return_value = LMSInitialize(parameter)

Parameter: “”. An empty string must be passed for conformance to this specification. This
parameter is reserved for future extensions.

Return Value : String representing a Boolean “true” or “false”. A "true" result indicates that the
initialization was successful and a "false" result indicates that it was not.

Example :

var result = LMSInitialize(“”)
if (result == “false”)
(
 // Do some error handling
)
else
(
 // Continue with the execution of the assignable unit
)

LMSFinish Description: The assignable unit must call this when it has determined that it no longer needs
to communicate with the CMI. If it successfully called LMSInitialize at any previous point. This
call signifies two things:
1. The assignable unit can be assured that any data set using LMSSetValue() calls has

been persisted by the CMI.
2. The assignable unit has finished communicating with the CMI.

Behavior notes

1. When the communication state is "running" and terminating communication
succeeds, the API instance

a) “Commits” any data in cache
b) sets the communication state to "terminated";
c) sets the error state to "0" (No error), and
d) returns "true" to the calling content object.

2. When the communication state is "running" and termination of communication or
committing the cache fails, the API instance

a) makes no change to the communication state;
b) sets the error state to "101" (General exception); and
c) returns "false" to the calling content object.

3. When the communication state is "not initialized", the API instance
a) makes no change to the communication state;

AICC - CMI Guidelines for Interoperability

August-16-2004 192 CMI001 Version 4.0

Session Methods
b) sets the error state to "301" (Not Initialized); and
c) returns "false" to the calling content object.

4. When the communication state is "terminated", the API instance
a) makes no change to the communication state;
b) sets the error state to "101" (General exception); and
c) returns "false" to the calling content object.

Note: Additional and more specific error codes will be added in later versions of this standard.

Syntax:
return_value = LMSFinish(parameter)

Parameter: “”. An empty string must be passed for conformance to this specification. This
parameter is reserved for future extensions.

Return Value : String representing a Boolean “true” or “false”. A "true" result indicates that the
initialization was successful and a "false" result indicates that it was not.

Example
var result = LMSFinish(“”)

7.4.5 Data-Transfer Methods
Data-transfer methods are used to direct the storage and retrieval of data that is to be available within the current
communication session.

Data-Transfer Methods
LMSGetValue Description: This function allows the AU (the assignable unit) to obtain information from the

CMI. It is used to determine
• Values for various categories (groups) and elements in the CMI data model.
• The version of the data model supported.
• Whether a specific category or element is supported.
• The number of items currently in an array or list of elements.

Syntax:
return_value = LMSGetValue(parameter)

Parameter:
datamodel.group.element

Returns the value of the named element.
datamodel._version

The _version keyword is used to determine the version of the data model supported by
the CMI.

datamodel.element._count
The _count keyword is used to determine the number of elements currently in an array.
The count is the total number of elements in the array, not the index number of the last
position in the array.

datamodel.element._children
The _children keyword is used to determine all the elements in a group or category that
are supported by the CMI.

Return Value : All return values are strings which can be converted to the appropriate type.

LMSGetValue(datamodel.group.element)

The return value is a string representing the current value of the requested element or
group.

LMSGetValue(datamodel._version)
The return value is a string representing the version of the data model supported by the
CMI.

LMSGetValue(datamodel.group._children)
The return value is a comma-separated list of all of the element names in the specified
group or category that are supported by the CMI. If an element has no children, but is
supported, an empty string (“”) is returned. An empty string (“”) is also returned if an
element is not supported. A subsequent request for last error can determine if the

AICC - CMI Guidelines for Interoperability

August-16-2004 193 CMI001 Version 4.0

Data-Transfer Methods
element is not supported. The error “401 Not implemented error” indicates the element
is not supported.

LMSGetValue(datamodel.group._count)
The return value is an integer that indicates the number of elements in an element list or
array.

Examples:
LMSGetValue("cmi.core.student_name")

A typical return value might be "Hyde, Jackson".

LMSGetValue("cmi.core.lesson_status")
A typical return value might be "incomplete".

LMSGetValue(cmi._version)

The current AICC CMI Guideline is version 4.0 of document CMI001. Therefore a
return value of AICC CMI001 4.0 would be appropriate.

LMSGetValue("cmi.student_preferences._children")

This is a request for category support. One typical return value would be, "audio,
speed, text". If there is no return, preferences are probably not supported. An
additional API call to determine the last error could verify this.

LMSSetValue Description: This function allows the assignable unit to send information to the API. The API

may be designed to immediately forward the information to the CMI, or it may be designed to
forward information based on some other approach. For instance, the API could accumulate
the information and forward everything to the CMI when the LMSFinish call is executed by the
AU.

This function is used to set the current values for various categories (groups) and elements in
the CMI data model.

The data element name and its group are provided as a parameter. The current value of that
parameter is included in the call. Only one value is sent with each call.

Syntax:
return_value = LMSSetValue(parameter, value)

Parameter: This is the name of a fully qualified atomic element defined in the CMI Data
Model. The argument is case sensitive. The argument is a string surrounded by quotes.

The following represents some forms this parameter may take.

cmi.element

This is the name of a category or group defined in the CMI Data Model. An example is
"cmi.comments".

cmi.element.element
This is the name of an element defined in the CMI Data Model. An example is
"cmi.core.student_name".

cmi.element.n.element
The value of the sub-element in the nth-1 member of the element array (zero-based
indexing is used).

Value: This is a string which must be convertible to the data type defined in this specification
for the element identified in the first parameter.

Return Value : String representing a Boolean.
A "true" result indicates that the function was successful and a "false" result indicates that it
was not.

Examples:
var result = LMSSetValue(“cmi.core.score.raw”, “95”)

Sets the cmi.core.score.raw to a value of 95.

LMSCommit Description: If the JavaScript object (or API implementation) is caching LMSSetValue values,
this call requires that any values not yet sent to the CMI be sent.

AICC - CMI Guidelines for Interoperability

August-16-2004 194 CMI001 Version 4.0

Data-Transfer Methods
In some cases, the API implementation may send the set values to the CMI as soon as they
are received, and not cache them locally. In such cases, this API is redundant and would
result in no additional action from the API implementation.

Syntax:
result = LMSCommit(parameter)

Parameter: “”. An empty string must be passed for conformance to this specification. This
parameter is reserved for future extensions.

Return Value : String representing a Boolean.
A "true" result indicates that the function was successful and a "false" result indicates that it
was not. If an API implementation automatically sends a values to the CMI as soon as
received, it shall return a “true” to this call.

Example :
var result = LMSCommit(“”);

Requires that any cached values, previously set via assignable unit calls to
LMSSetValue(), that have not been persisted by the CMI be persisted.

7.4.6 Error Handling Methods
Error handling methods are used for error handling and diagnostics.

All calls to the JavaScript instance result in the error status being set by the instance. This status may be determined
using the Error Condition Methods. The rules for setting the error status are the following:

1. All successful calls result in a status of 0 being set.
2. All successful calls result in the error status being set as described in the LMSGetLastError return value.
3. All error condition method calls do not change the error status.

Error Handling Methods

LMSGetLastError Description: The assignable unit must have a way of assessing whether or not any given
API call was successful, and if it was not successful, what went wrong. This routine returns
an error code from the previous API call. Each time an API function is called (with the
exception of this one, LMSGetErrorString, and LMSGetDiagnostic -- the support functions),
the error code is reset in the API. The AU may call the error functions any number of times
to retrieve the error code, and the code will not change until the next API call.

Syntax:
return_value = LMSGetLastError(parameter)

Parameter: “”. An empty string must be passed for conformance to this
specification. This parameter is reserved for future extensions.

Return Value : The return values are integer numbers that identify errors falling into the
following categories:

 100 General errors
 200 Syntax errors

 300 CMI errors
 400 Data model errors

The following codes are available for error messages:
0. No error
101. General exception
102. Server is busy.
201. Invalid argument error
202. Element cannot have children
203. Element not an array – cannot have count
204. Element cannot have a value
301. - Not initialized
401. Not implemented error
402. Invalid Set Value, element is a CMI keyword
403. Element is read only
404. Element is write only

AICC - CMI Guidelines for Interoperability

August-16-2004 195 CMI001 Version 4.0

Error Handling Methods
405. Incorrect data type

 Additional codes may be added in future versions

Examples:
var errorCode = LMSGetLastError(“”)

LMSGetErrorString Description: This function enables the AU to obtain a textual description of the error
represented by the error code number.

Syntax:
return_value = LMSGetErrorString(parameter)

Parameter: An integer number representing an error code.

Return Value : A string that represents the verbal description of an error.

Examples:
var errorString = LMSGetErrorString(“403”)

errorString should contain “Element is read only”.
LMSGetDiagnostic Description: This function enables vendor-specific error descriptions to be developed and

accessed by the AU. These would normally provide additional helpful detail regarding the
error.

Syntax:
return_value = LMSGetDiagnostic(parameter)

Parameter: The parameter may take one of two forms.
• An integer number representing an error code. This requests additional information on

the listed error code.
• “”. An empty string. This requests additional information on the last error that occurred.

Return Value : The return value is a string that represents any vendor-desired additional
information relating to either the requested error or the last error.

Examples:
var moreInfo = LMSGetDiagnostic(“403”)

moreInfo could contain more vendor specific information on the “Element is read
only” error.

AICC - CMI Guidelines for Interoperability

August-16-2004 196 CMI001 Version 4.0

7.5 Conformance Requirements
Conformance to this binding may be looked at from two viewpoints, that of the Assignable Unit (AU) and that of the
CMI.

There are three levels of obligation for the API's and the data elements described in this specification:

• Mandatory
• Optional
• Extension

Obligations for the AU and the CMI are different.

CMI Conformance
Mandatory means that the CMI JavaScript object shall perform the action that the API calls for. If the action is to
return a value to the AU, then the call must succeed in returning a value of the proper format and range.
Additionally, if the action is for the AU to set a value, then that value must assume the form requested by the AU,
and be returned if requested in the future.

Optional means that a conforming CMI may not respond at all to the parameters in a get value or set value call. A
conforming CMI may support many options.

An extension is an API or data element that is not described in this specification. Extensions may be supported by a
CMI. However, extension API's may not perform the identical function as a defined API; and extension data
elements may not contain the same semantic values as defined data elements. If extensions are used to duplicate
mandatory and optional features, the CMI is non-conforming.

AU Conformance
Mandatory means that the AU shall execute the API. Only two API's are mandatory for the AU: LMSInitialize and
LMSFinish.

Optional means that the AU may execute the API with the specified parameter and value at least once. Furthermore,
the parameter and value shall be in the proper format and range.

An extension is an API or data element that is not described in this specification. The AU may support extensions.
However, extension API's may not perform the identical function as a defined API; and extension data elements may
not contain the same semantic values as defined data elements. If extensions are used to duplicate mandatory and
optional features, the AU is non-conforming.

7.5.1 CMI Responsibilities
The mechanism described here assumes a clean separation between the API function calls used in the AU and the
API implementation (or API object or JavaScript object or API instance). The API function calls are embedded in
the AU. The API implementation is provided by the CMI when the AU is launched.

Launch
For browser and Web-based AU’s, the CMI shall launch the AU from a browser window that contains the API
implementation, or must provide a parent frame that contains the API implementation. This window shall contain a
reference to the assignable unit (which is an URL).

Communication
The API implementation provided by the CMI must support all the API function calls described in this document as
required.

AICC - CMI Guidelines for Interoperability

August-16-2004 197 CMI001 Version 4.0

The functions to "get" and "set" data element values are generic in nature and do not specify particular data
elements. Data elements can be retrieved from the API implementation using the LMSGetValue function and
modified using a LMSSetValue function. Regardless of implementation details, if a data element is supported by the
CMI, an LMSSetValue function call shall affect the value returned by a subsequent LMSGetValue function call on
that same data element.

All return values shall be strings which are convertible to the designated data type.

The CMI shall support the ability of the AU to "get" and "set" the "communication" data elements defined as
mandatory in this specification. "Support" means that when the AU executes an " LMSGetValue " on an element, a
legal value of the proper format and type and range will be returned. When the AU executes a legal " LMSSetValue
" on a supported element, that value will be taken and the appropriate value returned when the next " LMSGetValue
" on it is executed.

The CMI may support the ability of the AU to "get" and "set" the optional data elements.

The CMI may also support extensions not defined in this specification as long as those extensions do not duplicate
any mandatory or optional features. Additionally, the support of any extensions must not cause the failure of any the
AU not using the extensions.

CMI Conformance Requirements
- Supports the following transactions

• LMSInitialize
• LMSFinish
• LMSGetValue
• LMSSetValue
• LMSCommit
• LMSGetLastError
• LMSGetErrorString
•

May support security transactions
• LMSGetDiagnostic

- Supports all mandatory elements
• LMSGetValue shall succeed
• LMSSetValue shall succeed

- May support any or all optional elements
• LMSGetValue may succeed
• LMSSetValue may succeed

- May support extension elements if they do not duplicate defined
mandatory or optional elements
• LMSGetValue may succeed (or may fail)
• LMSSetValue may succeed (or may be ignored)

- Supported elements shall be proper type
- Supported elements shall be in proper range
- Keywords are all supported

Sequencing
Flow control – moving from one the AU object to another – is assumed to be the responsibility of the CMI and not
within the assignable unit (AU) itself. This is conceptually important because AU reuse cannot really happen if the
AU has embedded information that is context specific to the course. In this context, flow control means that the
decision of what AU (the AU) will next be presented to the student is made by the CMI. (This recognizes that some
AU’s may make decisions—that is, branch – within itself, but that kind of internal flow is hidden from the CMI.

The determination of which AU(s) the student is routed to is determined solely by the CMI and is defined in large
part by the Course Structure description (Chapter 3). Chapter 3 defines information about the AU that is context
specific to the course (e.g., the default sequence of AU’s, and prerequisites or completion requirements that might
alter the delivery path.)

AICC - CMI Guidelines for Interoperability

August-16-2004 198 CMI001 Version 4.0

7.5.2 AU Responsibilities
The AU is responsible for discovering (locating) the API object.

The AU shall be able to call JavaScript functions in a "foreign window". The A U does not have to be developed in
JavaScript but shall be able to call it. This capability enables the clean separation between the function calls used in
the AU and the implementation of those function calls provided by a learning management system.

For conforming Assignable Units, the AU shall call the LMSInitialize function before calling any other API
functions. If it calls the Initialize function successfully, it shall also call the LMSFinish function before it
terminates, even if it does not call any other API functions.

The AU may support the required set of "communication" data elements defined in this specification.

The table below summarizes the requirements for conforming AU’s.

Conformance Requirements for The AU
Must support the following transactions:

 - Initialize
 - Zero or more transactions of:
 - LMSGetValue(X)
 - LMSSetValue(X,Y)
 - Other
 - Finish

- X is an optional or extension data element
- Y must be in range
- Y must be the right type

Binding Mechanism
AU shall communicate with a CMI system through a JavaScript API. This API will be part of a JavaScript object
attached to either a parent window or the “opener” window for the HTML page. The AU object shall look for an
instance of the API implementation in the following locations, in order of precedence, and stop as soon as an
instance is found:

a) The chain of parents of the current window, if any exist, until the top window of the parent chain is
reached.

b) The opener window, if any.
c) The chain of parents of the opener window, if any exist, until the top window of the parent chain is reached.

An AU object may follow a simple algorithm to find an instance of an API implementation.

• Follow the algorithm until an instance is found.
• When found, return the instance and exit the “find adapter” routine.
• If not found, return a null and exit the routine.

A sample JavaScript implementation of this algorithm tested with several Web browsers is provided below.

Sample JavaScript to Locate API object

AICC - CMI Guidelines for Interoperability

August-16-2004 199 CMI001 Version 4.0

Sample JavaScript to Locate API object

var findAPITries = 0;

// returns the CMI API object (may be null if not found)
function findAPI(win)
{
 while ((win.API == null) &&
 (win.parent != null) &&
 (win.parent != win))
 {
 findAPITries++;
 if (findAPITries > 7)
 {
 alert("Error finding API.");
 return null;
 }
 win = win.parent;
 }
 return win.API;
}

// obtain the CMI API
function getAPI()
{
 var theAPI = findAPI(window);
 if ((theAPI == null) &&
 (window.opener != null) &&
 (typeof(window.opener) != "undefined"))
 {
 theAPI = findAPI(window.opener);
 }
 if (theAPI == null)
 {
 alert("Unable to find an API adapter");
 }
 return theAPI;
}

Summary Points : the AU assignable unit may only be launched by a CMI. An assignable unit may not itself launch
other assignable units. An assignable unit must, at a minimum, contain an initialize() and a finish() API call to
conform with this guideline.

AICC - CMI Guidelines for Interoperability

August-16-2004 200 CMI001 Version 4.0

7.6 Communication Data Model Mapping
The following table indicates the data elements that may be used by the AU in communicating with a CMI using the
API. Definitions and examples for the data elements are in Chapter 2.

In the following table, ”n” represents the array index (zero based). It is optional when there is only one member in
the array. The “Data Model Name” reflects the name of the data element that appears in Chapter 2. The “API
Name” is the name that shall be used in the LMSSetValue and LMSGetValue methods to identify the element.
Some elements, namely the _count and _children, do not appear in the data model, and may only be used in the API.
The “Get/Set” column indicates which methods may be used with the data element. The “Section” column
references the section in this document where the data model element is defined. The “Ob” column indicates the
whether an element is Mandatory for a CMI or not (“M” indicates mandatory, “O” indicates optional).

API Name Data Model Name Section Ob Get/Set
 core 2.1 M none
cmi.core._children M Get
cmi.core.student_id . .student id 2.1.1 M Get
cmi.core.student_name . student name 2.1.2 M Get
cmi.core.lesson_location . lesson location 2.1.4 M Get & Set
cmi.core.credit . credit 2.1.5 M Get
cmi.core.lesson_status . lesson status 2.1.6 M Get & Set
cmi.core.exit . exit 2.1.7 M Set
cmi.core.entry . entry 2.1.8 M Get
 . score 2.1.10 M none
cmi.core.score._children M Get
cmi.core.score.raw . . raw 2.1.10 M Get & Set
cmi.core.score.max . . max 2.1.10 M Get & Set
cmi.core.score.min . . min 2.1.10 M Get & Set
cmi.core.session_time . session time M Set
cmi.core.total_time . total time 2.1.12 M Get
cmi.core.lesson_mode . lesson mode 2.1.13 O Get
cmi. suspend_data suspend data 2.1 M Get & Set
cmi.launch_data launch data 2.3 M Get
cmi.comments Comments from learner 2.4 O Get & Set
 Itemized Comments from

Learner
 O

cmi.evaluation.comments._children O Get
cmi.evaluation.comments._count O Get
cmi.evaluation.comments.n.date . Date 2.5.3 O Set
cmi.evaluation.comments.n.time . Time 2.5.7 O Set
cmi.evaluation.comments.n.location . Location 2.5.6 O Set
cmi.evaluation.comments.n.content . Content 2.5.1 O Set
cmi.evaluation.comments.n.lesson_id Lesson_ID 2.14 O Set
cmi.comments_from_lms Comments from lms 2.6 O Get
 objectives 2.8 O
cmi.objectives._children O Get
cmi.objectives._count O Get
cmi.objectives.n.id . id 2.8.1 O Get & Set
cmi.objectives.n.score . score 2.8.2 O
cmi.objectives.score._children O Get
cmi.objectives.score._count O Get
cmi.objectives.n.score.raw . . raw 2.8.2 O Get & Set
cmi.objectives.n.score.max . . max 2.8.2 O Get & Set
cmi.objectives.n.score.min . . min 2.8.2 O Get & Set
cmi.objectives.n.status . status 2.8.3 O Get & Set
cmi.objectives.n.date . date 2.8.4 O Set
cmi.objectives.n.time . time 2.8.5 O Set
cmi.objectives.n.mastery_time . mastery time 2.8.6 O Set
 Student data 2.9 O
cmi.student_data._children O Get
cmi.student_data.attempt_number . Attempt number 2.9.1 O Get
cmi.student_data.tries . Tries 2.9.2 O Get & Set

AICC - CMI Guidelines for Interoperability

August-16-2004 201 CMI001 Version 4.0

API Name Data Model Name Section Ob Get/Set
cmi.student_data.tries._children O Get
cmi.student_data.tries._count O Get
cmi.student_data.tries.n.status . . Status 2.9.2.2 O Get & Set
cmi.student_data.tries.n.score . . Score 2.9.2.1 O Get & Set
cmi.student_data.tries.score._children O Get
cmi.student_data.tries.n.score.raw . . . raw 2.9.2.1 O Get & Set
cmi.student_data.tries.n.score.max . . . max 2.9.2.1 O Get & Set
cmi.student_data.tries.n.score.min . . . min 2.9.2.1 O Get & Set
cmi.student_data.tries.n.time . . time 2.9.2.3 O Set
cmi.student_data.mastery_score . Mastery score 2.9.2 O Set
cmi.student_data.max_time_allowed . Max Time Allowed 2.9.3 O Get
cmi.student_data.time_limit_action . Time Limit Action 2.9.4 O Get
cmi.student_data.tries_during_lesson . Tries During Lesson 2.9.5 O Set
cmi.student_data.attempt_records._children . Sessions Journal 2.9.7 O Get
cmi.student_data.attempt_records.n.score . . Score 2.9.7.1 O Get
cmi.student_data.attempt_records.n.score.children O Get
cmi.student_data.attempt_records.n.score.raw . . . raw 2.9.7.1 O Get
cmi.student_data.attempt_records.n.score.max . . . max 2.9.7.1 O Get
cmi.student_data.attempt_records.n.score.min . . . min 2.9.7.1 O Get
cmi.student_data.attempt_records.n.lesson_status . . Lesson Status 2.9.7.2 O Get
 Student preference 2.1 O
cmi.student_preference._children O Get
cmi.student_preference.audio . Audio 2.10.1 O Get & Set
cmi.student_preference.language . Language 2.10.2 O Get & Set
cmi.student_preference.lesson_type . Lesson type 2.10.3 O Get & Set
cmi.student_preference.speed . Speed 2.10.4 O Get & Set
cmi.student_preference.text . Text 2.10.5 O Get & Set
cmi.student_preference.text_color . Text color 2.10.6 O Get & Set
cmi.student_preference.text_location . Text location 2.10.7 O Get & Set
cmi.student_preference.text_size . Text size 2.10.8 O Get & Set
cmi.student_preference.video . Video 2.10.9 O Get & Set
cmi.student_preference.windows._count O Get
cmi.student_preference.windows.n . Windows 2.10.10 O Get & Set
 Interactions 2.11 O
cmi.interactions._children O Get
cmi.interactions._count O Get
cmi.interactions.n.id . ID 2.11.1 O Set
 . Objectives 2.11.2 O
cmi.interactions.objectives._count O Get
cmi.interactions.n.objectives.n.id . . ID 2.8.1 O Set
cmi.interactions.n.date . Date 2.11.3 O Set
cmi.interactions.n.time . Time 2.11.4 O Set
cmi.interactions.n.type . Type 2.11.5 O Set
 . Correct Responses 2.11.6 O
cmi.interactions.n.correct_responses._count O Get
cmi.interactions.n.correct_responses.n.pattern 2.11.6 O Set
cmi.interactions.n.weighting . Weighting 2.11.7 O Set
cmi.interactions.n.student_response . Student Response 2.11.8 O Set
cmi.interactions.n.result . Result 2.11.9 O Set
cmi.interactions.n.latency . Latency 2.11.10 O Set
 paths 2.12 O
cmi.paths._children O Get
cmi.paths._count O Get
cmi.paths.n.location_id . Location ID 2.12.1 O Set
cmi.paths.n.date . Date 2.12.2 O Set
cmi.paths.n.time . Time 2.12.3 O Set
cmi.paths.n.status . Status 2.12.4 O Set
cmi.paths.n.why_left . Why Left 2.12.5 O Set
cmi.paths.n.time_in_element . Time in Element 2.12.6 O Set
 Student demographics 2.13 O
cmi.student_demographics._children O Get
cmi.student_demographics.city . City 2.13.1 O Get
cmi.student_demographics.class . Class 2.13.2 O Get
cmi.student_demographics.company . Company 2.13.3 O Get
cmi.student_demographics.country . Country 2.13.4 O Get

AICC - CMI Guidelines for Interoperability

August-16-2004 202 CMI001 Version 4.0

API Name Data Model Name Section Ob Get/Set
cmi.student_demographics.experience . Experience 2.13.5 O Get
cmi.student_demographics.familiar_name . Familiar Name 2.13.6 O Get
cmi.student_demographics.instructor_name . Instructor Name 2.13.7 O Get
cmi.student_demographics.title . Title 2.13.12 O Get
cmi.student_demographics.native_language . Native Language 2.13.8 O Get
cmi.student_demographics.state . State 2.13.9 O Get
cmi.student_demographics.street_address . Street Address 2.13.10 O Get
cmi.student_demographics.telephone . Telephone 2.13.11 O Get
cmi.student_demographics.years_experience . Years Experience 2.13.13 O Get

AICC - CMI Guidelines for Interoperability

August-16-2004 203 CMI001 Version 4.0

8.0 Course Structure Definition (File Binding)
This chapter defines the File binding to the course structure data model (in chapter 3.0). This is the only binding to
course structure data model.

 The following items are covered in this section:

• How the CMI uses the files in this binding for interchange (import/export)
• Conformance requirements for this binding
• Which elements from the data model described in chapter 3.0 may be used by the File binding (Including

which files specific elements are located in and the format of those files).

Although many of the data elements in the course structure data model have different names in the interchange files,
there are no new data elements appearing in this chapter.

8.1 Conceptual Model
In the File binding, the CMI imports and exports course structures using text files (see figure below). To export a
course structure, the CMI system writes a series of related text files. The text files represent a general course
description (a single file) and series of relational data “tables” (one per file) that define all data needed to recreate a
course structure in an importing (target) CMI system. A CMI importing a course structure reads the text files and
recreates the course structure (or a subset of the original course structure) for its internal use.

Exporting
CMI system

Importing
CMI system

Course.CRS

Course.AU

Course.DES

Course.CST

Course.PRE

Course.ORT

Course.CMP

Text files representing a
course structure

AICC - CMI Guidelines for Interoperability

August-16-2004 204 CMI001 Version 4.0

8.2 Course Interchange

A set of 4 to 7 text files is used to describe a course’s content and structure (a Course Interchange File set). A CMI
system must be able to create and interpret course interchange file sets for import and export operations (i.e. course
interchange). The table below depicts the files used in a course interchange file set.

Files used in a Course Interchange File set

File Type
Data Elements &

Description
(See section below)

File Set
Extens ion

Data
Table Obligation

Course Description (CRS) File 8.4.1 {filename}.CRS No Mandatory
Assignable Unit (AU) File 8.4.2 {filename}.AU Yes Mandatory
Descriptor (DES) File 8.4.3 {filename}.DES Yes Mandatory
Course Structure (CST) File 8.4.4 {filename}.CST Yes Mandatory
Objectives Relationships (ORE) File 8.4.5 {filename}.ORE Yes Optional
Prerequisites (PRE) File 8.4.6 {filename}.PRE Yes Optional
Completion Requirements(CMP) File 8.4.7 {filename}.CMP Yes Optional

There is one course interchange file set per course. Files in course interchange file set must be named with the
corresponding file extensions (shown in the table above). In order to be considered a valid course interchange file
set, all of the following rules must be met:

Rule #1 - All files in the set must have the same base filename (depicted in the table above)
Rule #2 - All files in the set must be located in the same directory.
Rule #3 - All of the mandatory file types must be included with all required course data elements (see

Chapter 3.0) and in the proper format (see section 8.4)
Rule #4 - The structure represented must follow the correct usage requirements for course data elements

(see chapter 3.0).

There are three kinds of course elements that compose a course structure:
• Assignable Units
• Blocks
• Objectives

Course structures are logically organized around these three kinds of elements and the interpretation/creation of
course definition files sets depends on this organization. Certain files in a set are tabular representations of data (i.e.
“tables) – see table above. The files that represent data tables have a CMI system generated identifiers (see Course
Elements. System ID) that identify records that are specific to individual course elements. The identifiers serve as an
index to find data specific to a course element.

8.2.1 Course Structure Export
To export a course structure, the CMI system must create (export) a valid course interchange file set that accurately
reflects the data stored internally (in the CMI system database) for the given course.

The CMI must do the following in order to create a Course Definition File Set:

• Create all of the required files (as described in section 8.2).
• For each Assignable unit in the course, the CMI must:

o Generate a corresponding record in the Assignable Unit File (see section 8.4.2)
o Generate a corresponding record in the Descriptor File (see section 8.4.3)

• For each Block in the course, the CMI must:
o Generate a corresponding record in the Course Structure File (see section 8.4.4)
o Generate a corresponding record in the Descriptor File (see section 8.4.3)

The CMI may do the following in order to create optional features in a Course Definition File Set:

AICC - CMI Guidelines for Interoperability

August-16-2004 205 CMI001 Version 4.0

• Create optional files (described in section 8.2) as needed.
• Add optional data elements to the Course Description File (see section 8.4.1)
• For each course element, the CMI may:

o Generate a corresponding record in the Prerequisites File (see section 8.4.6)
o Generate a corresponding record in the Completion Requirements File (see section 8.4.7)

• For each Objective in the course, the CMI may generate a corresponding record in the Objectives
Relationships File.

• For each Objective in the course, the CMI must generate a corresponding record in the Descriptor File (see
section 8.4.3)

 8.2.2 Course Structure Import
To import a course structure, the CMI system must read a valid course interchange file set and build an internal
representation (in the CMI system database) accurately reflects the logical structure and data for the course
definition.

Since exported course structure file sets contain explicit references to Assignable Unit locations, it may be necessary
to edit the following course data elements prior to import:

Course Elements.File Name
Course.Elements.Command Line

This editing may be done manually prior to the import process or in an automated fashion. Some possible scenarios
for automated (AU location) updating are as follows:

• An installation process provided by the course developer
• Special import functionality in to the CMI system.

8.3 Conformance Requirements

There are three levels of obligation described in this binding specification:

• Mandatory
• Optional
• Extension

Mandatory means that the CMI must be able to import and export (create) a set of required course structure files (as
described in sections 8.2) and support all mandatory course data elements in those files.

Optional means that a conforming CMI may be able to import or export (create) optional course structure files and
support indicated course data elements. A conforming CMI may support many options. Course structure options
are grouped in levels of complexity (see section 3.5). A CMI may support individual optional elements without
supporting all elements defined in a course “level”
.
An extension is a course data element that is not described in this specification. Extensions may be supported by a
CMI for course structure data import or export. However, extension course data elements may not perform an
identical function as data elements defined in this specification; and extension data elements may not contain the
same semantic values as defined data elements. If extensions are used to duplicate mandatory and optional features,
the CMI is non-conforming.

AICC - CMI Guidelines for Interoperability

August-16-2004 206 CMI001 Version 4.0

8.4 Course Structure Data Model Mapping

This section contains the mapping of the course structure data model elements (defined in section 3.0) to the file
binding. The files are as follows:

• Course Description (.CRS) File
• Descriptor (.DES) File
• Assignable Unit (.AU) File
• Course Structure (.CST) File
• Objectives Relationships (.ORT) File
• Prerequisites (.PRE) File
• Completion Requirements (.CMP) File

The following is defined for each of the above files:
• A description of the file’s purpose
• A list of course structure data model elements used
• The file’s data format
• An example

8.4.1 Course Description (.CRS) File
Purpose
This file contains information about the course as a whole. It offers information that relates to more than just a
single element in the course.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, obligation, course level
for the Course Description file.

Group Names & Keywords Data Model Element Section Obligation Course
Level

[Course] Course 3.1 Mandatory 1
Course_Creator Course.Creator 3.1.1 Mandatory 1
Course_ID Course.ID 3.1.2 Mandatory 1
Course_System Course.System 3.1.3 Mandatory 1
Course_Title Course.Title 3.1.4 Mandatory 1
Level Course.Level 3.1.5 Mandatory 1
Max_Fields_CST Course.Max Fields CST 3.1.6 Mandatory 1
Max_Fields_ORT Course.Max Fields ORT 3.1.7 Optional 3b
Total_Aus Course.Total AUs 3.1.8 Mandatory 1
Total_Blocks Course.Total Blocks 3.1.9 Mandatory 1
Total_Objectives Course.Total Objectives 3.1.10 Optional 3b
Total_Complex_Obj Course.Total Complex Objectives 3.1.11 Optional 3b
Version Course.Version 3.1.12 Mandatory 1

[Course_Behavior] Course.Behavior 3.2 Mandatory 1
Max_Normal Course.Behavior.Max Normal 3.2.1 Mandatory 1

[Course_Description] Course.Description 3.3 Mandatory 1

File Format
The Course Description file is text formatted as datatype CMIFormatINI. (see section 9.0 - Datatypes)

AICC - CMI Guidelines for Interoperability

August-16-2004 207 CMI001 Version 4.0

Example
An example of a typical Course Description file is show below

Course Description (.CRS) File Example
[Course]
course_creator=ABC Airplanes, “Jason Doit, CIO”, Taylor Belt, Criss Cross
course_id = A16.82.2003
course_system = C++ for most units, Delphi for management system
course_title = Principles of Airplane Design and Flight
level=3b
max_fields_cst=7
max_fields_ort = 5
total_aus = 36
total_blocks = 8
total_objectives = 46
total_complex_objectives = 5
version = 4.0
[Course_Behavior]
max_normal = 99
[Course_Description]
This course is designed to instill in the student a sense of wonder and amazement. It
covers the principles of flight, putting the principles in historical context. It
includes interactivity and multimedia.

When the student completes this course he will be able to complete a 100 question,
multiple choice test, with over 80% correct answers. The test is included as lesson 36:
“Final Quiz.”

8.4.2 Descriptor (.DES) File
Purpose
This file contains a complete list of every course element in the course. It is used as the basic cross-reference file
showing the correspondence of system generated IDs with user defined IDs for every element.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Descriptor file.

Field Name Data Model Element Section Obligation Course
Level

System_ID Course Elements.System ID 3.4.1 Mandatory 1
Developer_ID Course Elements.Developer ID 3.4.2 Mandatory 1
Title Course Elements.Title 3.4.3 Mandatory 1
Description Course Elements.Description 3.4.4 Optional 2

File Format
The Descriptor file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). All field name
identifiers must be included in the header row. Note that the order of field name identifiers specify field position
(i.e. “columns”) in a record (i.e. a “row”) and can be in any order. Unsupported data elements are represented as
empty strings. Custom fields can be added to support vendor specific extensions but these must have
corresponding field identifiers in the header row and must not duplicate or conflict with existing fie lds’
functionality.

Example
An example of a typical Descriptor file is show below

Descriptor (.DES) File Example

AICC - CMI Guidelines for Interoperability

August-16-2004 208 CMI001 Version 4.0

Descriptor (.DES) File Example
"system_id","developer_id","title","description"
“Root”, “AP-PP-2003”, Modern Power Plants – Description and Operation, “This course covers
Pratt & Whitney jet engines. It provides information on both how they are designed, and how
they may be operated.”

"A1","PP1-2","Power Plant Introduction","An overview of the operation of the primary systems in
the Pratt & Whitney PW2037 engine."

B1, “PP20-1”, “Power Plant Description”,,

"A2","PP2-1","Power Plant Fuel System","Fuel movement from the tank to the combustors."

"A3","PP3-1","Power Plant Oil System","Oil circulation system in the PW2037 engine."

“A4”, PP4-1, “Designing for the Future”, “A historical perspective on how these engines came to
be.”

“B2”, “PP20-2”, “Power Plant Operation”,,

“A5”,”PP5-2”, “Starting an Engine”, “A generic tutorial on what must be done in any airplane to
start one of these jet engines.”

A5, PP6-2, “From the Ground to Flight”, “How to operate, and what performance to expect, when
engines are in the ground and in flight.”

8.4.3 Assignable Unit (.AU) File
Purpose
Information relating to the assignable units (AU) in the course.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Assignable Unit file.

Field Name Data Model Element Section Obligation Course
Level

System_ID Course Elements.System ID 3.4.1 Mandatory 1
Type Course Elements.Type 3.4.5 Optional 2
Command_Line Course Elements.Command Line 3.4.6 Mandatory 1
File_Name Course Elements.File Name 3.4.7 Mandatory 1
Max_Score Course Elements.Max Score 3.4.8 Optional 2
Mastery_Score Course Elements.Mastery Score 3.4.9 Optional 2
Max_Time_Allowed Course Elements.Max Time Allowed 3.4.10 Optional 2
Time_Limit_Action Course Elements.Time Limit Action 3.4.11 Optional 2
System_Vendor Course Elements.Development System 3.4.12 Optional 2
Core_Vendor Course Elements.Launch Data 3.4.13 Mandatory 1
Web_Launch Course Elements. Web Launch Parameters 3.4.14 Mandatory 1
AU_Password Course Elements.AU Password 3.4.15 Mandatory 1

File Format
The Assignable Unit file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). All field
name identifiers must be included in the header row. Note that the order of field name identifiers specify field
position (i.e. “columns”) in a record (i.e. a “row”) and can be in any order. Unsupported data elements are
represented as empty strings. Custom fields can be added to support vendor specific extensions but these must have
corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.

Example
An example of an Assignable Unit file is show below

Assignable Unit (.AU) File Example

AICC - CMI Guidelines for Interoperability

August-16-2004 209 CMI001 Version 4.0

Assignable Unit (.AU) File Example
"system_id", "type", "command_line", "Max_Time_Allowed", ”time_limit_action”, "file_name",
"max_score", "mastery_score", "system_vendor", "core_vendor”, “web_launch”, “AU_password”

"A11","B16-lesson","APU1 -nuv", "00:16:00", “Exit”, "APU1.EXE", 80, 80, "APW", , ,
”invasion1944”

"A12","test", "APU2 -nuv", "00:26:00", ”E,Message”, "APU2.EXE", 100, 90, "APW", "test = on",
”vendorparam = plato”, “strangelove”

"A13", "lesson", "ELEC -nuv", "00:28:00", ”E,N”, "ELEC1.EXE", 50, 50, "APW",

8.4.4 Course Structure (.CST) File
Purpose
This file contains the basic data describing the order and grouping of AU’s in a course. It includes the definition of
course elements contained in blocks. The order in which these appear in the file implies (but does not force) an
order for presentation to the student.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Course Structure file. Note that there may be multiple instances of Course Elements.Members.System
ID associated with a single instance of Course Elements.System ID.

Field Name Data Model Element Section Obligation Course
Level

Block Course Elements.System ID 3.4.1 Mandatory 1
Member Course Elements.Members.System ID 3.4.16.1 Mandatory 1

File Format
The Assignable Unit file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). Note that
each record may have a variable number of columns for Course Elements.Members.System ID (Including
corresponding field name header). The maximum number of columns is determined by the header row.

Example

Course Structure File Example
"block","member","member","member","member"
"root", "B1", "B2", "B3",,
"B1", "A1", "A2", "A3",,
"B2", "A4", "A5", "A6", "A7"
"B3", "A8", "A9", ,,

8.4.5 Objectives Relationships (.ORT) File
Purpose
The Objectives Relationship file defines the relationships of simple and complex objectives to assignable units and
blocks.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Objectives Relationship file. Note that there may be multiple instances of Course
Elements.Members.System ID associated with a single instance of Course Elements.System ID

Field Name Data Model Element Section Obligation Course
Level

Course_Element Course Elements.System ID 3.4.1 Optional 3b
Member Course Elements.Members.System ID 3.4.15 Optional 3b

AICC - CMI Guidelines for Interoperability

August-16-2004 210 CMI001 Version 4.0

File Format
The Objectives Relationship file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). Note
that each record may have a variable number of columns for Course Elements.Members.System ID (Including
corresponding field name header). The maximum number of columns is determined by the header row.

Example
An example of an Objectives Relationship file is show below

Objectives Relationship File example
"course_element","member","member","member","member","member"
"B13","J23","J24","J25",,
"A48","J27","J28",,,
"J16","J93","J94","J95",,
"B14","J16","J26","J29","J30","J31"
“J31”,”A15”,,,,

8.4.6 Prerequisites (.PRE) File
Purpose
Sometimes it may be desirable to prevent a student from entering a lesson or assignable unit until he has met
certain prerequisites. This file allows that sort of constraint to be placed on each block or assignable unit (AU)
in a course.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Prerequisite file.

Field Name Data Model Element Section Obligation Level
Structure_Element Course Elements.System ID 3.4.1 Optional 2
Prerequisite Course Elements.Prerequisite 3.4.16 Optional 2, 3b **

(** = See section 3.5.1 notes for additional information about this data element levels)

File Format
The Prerequisite file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). All field name
identifiers must be included in the header row. Note that the order of field name identifiers specify field position
(i.e. “columns”) in a record (i.e. a “row”) and can be in any order. Unsupported data elements are represented as
empty strings.

Example

Prerequisite File Example
structure_element, prerequisite
a2, a1
a3, a2
b1, a3
a6, b1
b2, a6

8.4.7 Completion Requirements (.CMP) File
Purpose
The Completion Requirements file is designed to allow the explicit specification of when an assignable unit, block
or objective should be assigned a specific status when that status does not conform to the defaults. It is essentially
an exception file. All field name identifiers must be included in the header row. Unsupported data elements are
represented as empty strings.

Course Structure Data Model Elements

AICC - CMI Guidelines for Interoperability

August-16-2004 211 CMI001 Version 4.0

The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Completion Requirements file.

Field Name Data Model Element Section Obligation Level
Structure_Element Course Elements.System ID 3.4.1 Optional 2
Requirement Course Elements.Completions.Requirement 3.4.18.1 Optional 2, 3a, 3b **
Result Course Elements.Completions.Status if True 3.4.18.2 Optional 2
Next Course Elements.Completions.Next AU if True 3.4.18.3 Optional 2
Return Course Elements.Completions.Goto after Next 3.4.18.4 Optional 2

(** = See section 3.5.1 notes for additional information about this data element levels)

File Format
The Prerequisite file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). All field name
indentifiers must be included in the header row. Note that the order of field name identifiers specify field position
(i.e. “columns”) in a record (i.e. a “row”) and can be in any order. Unsupported data elements are represented as
empty strings. Custom fields can be added to support vendor specific extensions but these must have corresponding
field identifiers in the header row and must not duplicate or conflict with existing fields’ functionality.

Example
An example of an Completion Requirements file is show below

Completion Requirements file example
Structure_Element, Requirement, Result, Next, Return
A4, A4=F, Passed, A5, A4

AICC - CMI Guidelines for Interoperability

August-16-2004 212 CMI001 Version 4.0

9.0 Data Types

All data types used in this specification are defined in the following section. All data types are character strings
encoded per ISO-8859. Any ISO-8859 defined character set can be used. (ISO-8859 characters sets include US-
ASCII as a subset)

Each data type has the following items to describe it:

Data type
Name of the data type defined

Description
A verbal description of the size and data formatting rules for a data type.

BNF Notation
This is a structured notation representing the format of the data in BNF (Backus-Naur Form). How to
interpret BNF is described in section 10.0 BNF Notation . Data Types defined in this section may be also
used is BNF statements as constructs (all other BNF constructs are described in section 10.0). The BNF
notation takes precedence should it be in conflict with the verbal description of a datatype.

Size
Size limit for this data type

Examples .
Examples included in this section are surrounded by double-quotes (“)s to indicate literal values. Unless
otherwise specified. the double-quotes are not part of the values depicted. Comments describing the
examples are indicated italics and are not part of the data values depicted

 Data Types

Data type CMIBlank
Description An empty string.
BNF Notation “”
Size 0 Characters
Examples “”

Data type CMIBoolean
Description A vocabulary of two words. (“true” or “false”).
BNF Notation “true” | “false”
Size 4 Characters
Examples “true”

Data type CMIComment4096INI
Description A string composed of zero or more consecutive “comment statements”.

Comment statements are composed of the following items:

• Start tag - The comment statement starts with integer number
enclosed in angle brackets (i.e. “<1>”). This number is serialized
for the next comment statement (i.e. the next comment would
begin with a “<2>”)

AICC - CMI Guidelines for Interoperability

August-16-2004 213 CMI001 Version 4.0

 Data Types
Location Tag (optional) – The location tag indicates the location in the AU
where the comment was made by the user. This optional tag is located
immediately after the start tag. It is comprised of a the letter “L” followed
by a period and an AU defined location enclosed in angle brackets
(e.g.”<L.some lesson location>”)

• Body - The body of the comment is included after the start tag. A
comment may include any printable character except “<> []”.
Embedded carriages, spaces, and tabs are also allowed.

End Tag - The comment statement ends with a “.e” added to an integer
number with enclosed in angle brackets (i.e. “<e.1>”) The integer number
in the end tag matched the start tag.

BNF Notation *(

 (“<” *1(DIGIT) “>”)
 [“<” (“L” | “l”) “.” 1*(INI_CMT_OK) “>”]
 *(INI_CMT_OK | WHITESPACE)
 (“<e.” *1(DIGIT) “>”)
)

Size 4096 Characters
Examples “<1>The background color is too blue!<1.e><2>The CDU panel has the

incorrect ‘way points’ displayed for this route. <2.e><3><l.slide #36>The CDU
panel has the incorrect ‘way points’ displayed for this route. <3.e><4>The CDU
panel has the incorrect ‘way points’ displayed for this route. <4.e>”

 “<1>The background color is too blue!<1.e>

<2>The CDU panel has the incorrect ‘way points’ displayed for this route. <2.e>

<3>The CDU panel has the incorrect ‘way points’ displayed for this route. <3.e>

<4>The CDU panel has the incorrect ‘way points’ displayed for this route.
<4.e>”

Data type CMIDate
Description A period in time of one day, defined by year, month, and day in the following

numerical format YYYY/MM/DD.
BNF Notation 4DIGIT “/” 2DIGIT “/” 2 DIGIT
Size 10 Characters
Examples “2002/05/01” May 5th, 2002

Data type CMIDecimal
Description A number that may have a decimal point. If not preceded by a minus sign, the

number is presumed to be positive. Examples are "2","2.2" and “-2.2).
BNF Notation [“-“] *DIGIT [“.” *(DIGIT)]
Size 1 to 255 characters
Examples

Data type CMIDirectoryNameFull
Description Fully qualified Windows directory path specification with drive letter(s), directory

path.

AICC - CMI Guidelines for Interoperability

August-16-2004 214 CMI001 Version 4.0

 Data Types
<Drive Letter>:\<directories>\

Embedded spaces in directory names are allowed. Non printable characters
and < > ? * ” / \ : are not allowed in directory names. Directory names are
separated by \’s (back slashes). Leading and trailing spaces are not allowed
around the back slashes.

This data type may be up to 255 characters in size.

BNF Notation 2*1(ALPHA) “:\” ; Drive volume and root dir
*(*1(ALPHA | DIGIT | FILE_SAFE) “\”) ; zero or more directory names

Size 255 characters
Examples

Data type CMIFeedback
Description A structured description of a student response in an interaction. The structure

and contents of the feedback depends upon the type of interaction.

CMIFeedBack sub datatype(s) are as follows (each one matching the various
interaction types):

Choice
Fill-in
Likert
Matching
Numeric
Performance
Sequencing
Single character
True/False

Data type CMIFeedback:Choice
Description Feedback is one or more single characters separated by a comma. Legal

characters are “0” to “9” and “a” to “z”. If all the characters must be chosen to
assume the feedback is correct, then the comma-separated list must be
surrounded by curly brackets: { }. If there are multiple possible correct
responses, they are separated by semi-colons (“;”)s.

BNF Notation ENUM | (“{“ SEQ “}” *(“;” “{“ SEQ “}”))
Size 255 characters
Examples “2;3;4;a;c” 2,3,4,a, or c are all valid choices
 “{3,4,5};{2,4,b}” 3,4, 5 all selected or 2,4,b all selected are the possible correct

answers.
 “3;4;5” 3,4, or 5 selected are the possible correct answers.

Data type CMIFeedback:Fill-in
Description A character string of up to 255 characters in length. After the first letter spaces

are significant.
BNF Notation *255(LCHAR)
Size 255 characters
Examples “The procedure is not correct !”
 “The sequence should be 4-3-2-1 instead of 1-2-3-4”

Data type CMIFeedback:Likert

AICC - CMI Guidelines for Interoperability

August-16-2004 215 CMI001 Version 4.0

 Data Types
Description Single character. Legal characters are “0” to “9” and “a” to “z”.
BNF Notation DIGIT | LOWERCASE
Size 1 character
Examples “1”
 “a”

Data type CMIFeedback:Matching
Description One or more pairs of identifiers. Each identifier is a single letter or number (0 to

9 and a to z). The identifiers in a pair are separated by a period. Commas
separate the pairs. If multiple pairs must be matched correctly to consider the
interaction correct, then the comma separated list of pairs are surrounded by
curly brackets “{ }”.

BNF Notation MSEQ | (“{“ MSEQ “}”
Size 255 characters
Examples “2.a;3.b;4.c” 2.a,3.b,4.c are all valid matches
 “{3.c,4.d,5.e}” The match pairs 3.c,4.d, 5.e (as a group) .
 “3.a” The match pair 3.a is the only correct ans wer.
 “1.b, 2.e, 3.d” 1.6, 2.e, or 3.d are all possible answers

Data type CMIFeedback:Numeric
Description A valid CMIDecimal value. This element may be up to 255 characters in length.
BNF Notation See CMIDecimal
Size 255 characters
Examples “2.5”

Data type CMIFeedback:Performance
Description This is a very flexible format. Essentially an alphanumeric string of 255

characters or less.
BNF Notation *255(LCHAR)
Size 255 characters
Examples

Data type CMIFeedback:Sequencing
Description A series of single characters separated by commas. Legal characters are “0” to

“9” and “a” to “z”. The order of the characters determines the correctness of the
feedback.

BNF Notation (DIGIT | LOWERCASE) 1*(“,” (DIGIT | LOWERCASE))
Size 255 characters
Examples “0,1”
 “a,b,c,1,2”

Data type CMIFeedback:True-False
Description A true/false value of type CMIBoolean.
BNF Notation See CMIBoolean
Size 4 characters
Examples See CMIBoolean

Data type CMIFeedbackCSV
Description A structured description of a response in an interaction. The structure and

contents of the feedback depends upon the type of interaction.

AICC - CMI Guidelines for Interoperability

August-16-2004 216 CMI001 Version 4.0

 Data Types

CMICSVFeedBack sub datatype(s) are as follows (each one matching the
various interaction types):

Choice
Fill-in
Likert
Matching
Numeric
Performance
Sequencing
Single character
True/False

Data type CMIFeedbackCSV:Choice
Description Feedback is one or more single characters separated by a comma. Legal

characters are “0” to “9” and “a” to “z”. If all the characters must be chosen to
assume the feedback is correct, then the comma-separated list must be
surrounded by curly brackets: { }. If there are multiple possible correct
responses, they are separated by semi-colons (“;”)s.

BNF Notation ENUM | (“{“ SEQ “}” *(“;” “{“ SEQ “}”))
Size 255 characters
Examples “2;3;4;a;c” 2,3,4,a, or c are all valid choices
 “{3,4,5};{2,4,b}” 3,4, 5 all selected or 2,4,b all selected are the possible correct

answers.
 “3;4;5” 3,4, or 5 selected are the possible correct answers.

Data type CMIFeedbackCSV:Fill-in
Description A string up to 255 characters in length. After the first letter spaces are

significant. Double quotes are not allowed.
BNF Notation *255(CSV_OK | “,”)
Size 255 characters
Examples “The procedure is not correct !”
 “The sequence should be 4-3-2-1 instead of 1-2-3-4”

Data type CMIFeedbackCSV:Likert
Description Single character. Legal characters are “0” to “9” and “a” to “z”.
BNF Notation DIGIT | LOWERCASE
Size 1 character
Examples “1”
 “a”

Data type CMIFeedbackCSV:Matching
Description One or more pairs of identifiers. Each identifier is a single letter or number (0 to

9 and a to z). The identifiers in a pair are separated by a period. Commas
separate the pairs. If multiple pairs must be matched correctly to consider the
interaction correct, then the comma separated list of pairs are surrounded by
curly brackets “{ }”. If there are multiple pair combinations that are possible
correct responses then those combinations are separated by semi-colons “;”.

BNF Notation MSEQ | (“{“ MSEQ “}” *(“;” “{“ MSEQ “}”))

AICC - CMI Guidelines for Interoperability

August-16-2004 217 CMI001 Version 4.0

 Data Types
Size 255 characters
Examples “2.a;3.b;4.c” 2.a,3.b,4.c are all valid matches
 “{3.c,4.d,5.e};{2a,6.b}” The match pairs 3.c,4.d, 5.e (as a group) or matched

pairs 2.a,6.b (as a group) are the possible correct
answers.

 “3.a” The match pair 3.a is the only correct answer.

Data type CMIFeedbackCSV:Numeric
Description A valid CMIDecimal value. This element may be up to 255 characters in length.
BNF Notation CMIDecimal
Size 255 characters
Examples “2.5”
 3;4;5

Data type CMIFeedbackCSV:Performance
Description This is a very flexible format. Essentially an alphanumeric string of 255

characters or less. Double quotes not allowed.
BNF Notation *255(CSV_OK | “,”)
Size 255 characters
Examples

Data type CMIFeedbackCSV:Sequencing
Description A series of single characters separated by commas. Legal characters are “0” to

“9” and “a” to “z”. The order of the characters determines the correctness of the
feedback.

BNF Notation (DIGIT | LOWERCASE) 1*(“,” (DIGIT | LOWERCASE))
Size 255 characters
Examples “0,1”
 “a,b,c,1,2”

Data type CMIFeedbackCSV:True-False
Description A vocabulary limited to on of the following values: “true” or

“false”. The values are case insensitive and only the first character is
significant. (But it is recommend to use the CMIBoolean values for greater
compatibility)

BNF Notation (“t” | “T” | “f” | “F”) *3(CSV_OK)
Size 4 characters
Examples “T”
 “False”

Data type CMIFileNameFull
Description A fully qualified Windows file specification with drive letter(s), directory path,

filename, and file extension (if any).

<Drive Letter>:\<directories>\<filename>

Embedded spaces in filenames and directory names are allowed. Non printable
characters and < > ? * ” / \ : are not allowed in filenames or directory names.
Filename and Directory names are separated by \’s (back slashes). Leading
and trailing spaces are not allowed for file name.

AICC - CMI Guidelines for Interoperability

August-16-2004 218 CMI001 Version 4.0

 Data Types
BNF Notation 2*1(ALPHA) “:\” ; Drive volume and root dir

 *(*1(ALPHA | DIGIT | FILE_SAFE) “\”) ; zero or more directories
 *1(ALPHA | DIGIT | FILE_SAFE) ; filename

Size 255 characters
Examples BB:\some dir1\some dir 2\file.ext
 C:\

Data type CMIFormatCSV
Description A tabular representation of data in a text string. (Or the Contents of a CSV

(Comma-Separated Value) formatted text file)

This datatype is divided into records and those records into fields (i.e. “rows
and columns”). A record is the data found on a single line (using a carriage-
return/line feed as a end-of-line marker). A field is the data that is found
between commas “,”s (comma delimited) on the line. Field data may or may
not be enclosed in double-quotes (“”). Field data must be enclosed in double
quotes if it contains leading/trailing spaces or commas (“,”s). Leading/trailing
space on unquote field data is ignored. Field data may not contain double-
quotes.

The first line is called the “header” and contains a comma-separated list of the
field identifiers. Field identifiers are not data but specify the name and position
of each field in the following records (lines). Note the first two examples below.
Both examples represent the same data even though the order is different.
Note that a system interpreting CSV data must be able to parse the data in both
cases and yield the same result.

Refer to the BNF notation below (and section 10.0) for more detail.

BNF Notation CSV_HEADER *CSV_RECORD
Size Undefined
Examples Field#3Name,Field#2Name,Field#1Name, Field#4Name

Field#3-Rec1-Data, Field#2-Rec1-Data, Field#1-Rec1-Data, Field#4-Rec1-Data
“Field#3-Rec2-Data”, Field#2-Rec2-Data, Field#1-Rec2-Data, Field#4-Rec2-Data
Field#3-Rec3-Data, Field#2-Rec3-Data, Field#1-Rec3-Data, Field#4-Rec3-Data

 “Field#1Name”,”Field#2Name”,”Field#3Name”,”Field#4Name”
Field#1-Rec1-Data, Field#2-Rec1-Data, Field#3-Rec1-Data, Field#4-Rec1-Data
Field#1-Rec2-Data, Field#2-Rec2-Data, Field#3-Rec2-Data, Field#4-Rec2-Data
Field#1-Rec3-Data, Field#2-Rec3-Data, Field#3-Rec3-Data, Field#4-Rec3-Data

Data type CMIFormatINI
Description Contents of an “AICC style” INI formatted text file (or text string). The format

used in this specification is a variation of the Microsoft Windows *.INI file
format. It is organized as follows:

• Groups
• Keywords
• Comments
• “Free Form” Groups

Groups are names enclosed in square brackets “[“ “]”. Groups contain
keywords. Groups are essentially records and keywords are essentially fields.
Groups must be unique. Should a Group name be duplicated, only the first
instance is used. Each keyword within a single group must be unique. If
keywords are duplicated within a group, only the first instance is used. (See
datatype CMIGroupINI.)

AICC - CMI Guidelines for Interoperability

August-16-2004 219 CMI001 Version 4.0

 Data Types
Keywords are assigned values. (i.e. “keyword = keyword value”). Leading and
trailing “linear whitespace” (tabs and spaces) are not included in the value of
keyword.

Comments are any line within a group (or any line positioned before all groups)
that has a semi-colon “;” as its first non-whitespace character. Comments are
text that is of use to a human viewing a file. Programs processing the data in
the file ignore them.

“Free-Form” Groups represent the variation from Microsoft Windows *.INI
file format. They are delimited in the same manner as Groups (with a name
enclosed in square brackets), but the contents of this kind of group can contain
free formatted text and it not restricted to “keyword=keyword value” format.
Another distinction is that all the data contained in a “Free- Form” Group is
treated as a single data element. The data begins at the first non-whitespace
character after the group name and ends with the last non-whitespace
character before the next group name (or end of buffer/file). Leading and
trailing whitespace are not included in the value of a “Free-Form” group.
Square brackets (“[]”) are not allowed. (See datatype
CMIGroupFreeFormINI.)

See BNF notation below (and in section 10.0) for more details on formatting

BNF Notation *(WHITESPACE | INI_COMMENT) *(CMIGroupINI | CMIGroupFreeFormINI)
Size Undefined
Examples ; Comments can appear before

[Core]
; and after group names.
; Comments can also appear before
SCORE = 87
; and after keywords.
TIME = 00:25:30
; Their existence is ignored

LESSON_STATUS= I
; CORE_VEDNOR is a “Free-form” group
;
[CORE_VENDOR]
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxx

[CORE_LESSON]

Data type CMIGroupINI
Description An INI “group”. This element is patterned after a “section” contained a Microsoft

Windows INI format file.

An INI group consists of the following elements:

1. One group name enclosed in square brackets (“[]”)
2. Zero or more Keyword/value pairs (i.e. “keyword = value”)
3. Zero or more comments. (a comment consists of a line with the first

character being a semi-colon “;”) Comments are not processed.

Each of the above elements (Keyword/value pair, comment, section name)
exists on a single line with leading trailing whitespace. Blank lines may existing

AICC - CMI Guidelines for Interoperability

August-16-2004 220 CMI001 Version 4.0

 Data Types
between element.

Please refer to BNF notation below (and in Section 10.0) for a more detailed
definition of this type.

BNF Notation INI_SECTION *(INI_NAME_VALUE | INI_COMMENT | WHITESPACE)

Size Undefined
Examples [CORE]

 Student_ID = jones-123
 Student_NAME = Jones, Jackie J.
LESSON_STATUS = NA ,A
SCORE=
TIME = 00:00:00

Credit = Credit

 [Some section]
keyword1 = value 1

Data type CMIGroupFreeFormINI
Description A Freeform INI “group”. This data type has a “group name” (like CMIGroupINI)

but does not require the contents of the group to have name/value pairs.

An Freeform INI group consists of the following elements:

1. One group name enclosed in square brackets (“[]”) followed by a
carrige return/linefeed.

2. Zero or more characters of INI_FREEDATA

Please refer to BNF notation below (and in Section 10.0) for a more detailed
definition of this type.

BNF Notation INI_SECTION *(INI_FREEDATA)
Size Undefined
Examples [CORE_VENDOR]

xxxxxxxxxxxx
01010101010101

 [CORE_VENDOR]
keyword1 = value 1

Data type CMIIdentifier
Description A string with no white space or unprintable characters in it. Maximum of 255

characters.
BNF Notation *255(VIEWABLE)
Size Limit 255 characters
Examples “Student#*(&%^*(#^*(&Q”
 “Student#23423”

Data type CMIIdentifierDevID

AICC - CMI Guidelines for Interoperability

August-16-2004 221 CMI001 Version 4.0

 Data Types
Description Up to 255 alphabetic, numeric, or “”_ - { } ” characters with no spaces.
BNF Notation *255(DIGIT | ALPHA | “_” | “-“ | “}” | “{“)
Size Limit 255 characters
Examples “{E8128C30-6BF8-11cf-96FC-0020AFED9A65}”

Data type CMIIdentifierGUID
Description A 128-bit value that is universally unique. This 128-bit value can be generated

using algorithms described in any of the following documents:
• ISO-11578
• Draft RFC UUIDs and GUIDs by Paul J. Leach and Rich Salz.

The value is represented by 5 hexadecimal numbers separated by dashes. The
value may or may optionally be enclosed in curly braces “{}”.

See BNF notation below for detailed formatting.

BNF Notation [“{“] 8HEX “-“ 4HEX ”-“ 4HEX “-“ 4HEX “-“ 12HEX [“}”]
Size 36 characters
Examples “{E8128C30-6BF8-11cf-96FC-0020AFED9A65}”

Data type CMIIdentifierINI
Description A string of up to 255 characters with no whitespace. Double quote (“)s are not

allowed.
BNF Notation *255(DIGIT | ALPHA | EXTENDED | CSV_SAFE)
Size 255 characters
Examples “Jstudent_1234”
 “Student-12”
 “STUD_1”

Data type CMIInteger
Description An integer number from 0 to 65536.
BNF Notation 5*1(DIGIT)
Size 5 characters
Examples 65000
 “1”

Data type CMILevel
Description A string indicating the level of features in a course structure. Limited to the

following vocabulary of values:
“1” - Level 1 course structure
“2” - Level 2 course structure
“3a - Level 3a course structure
“3b” - Level 3b course structure

BNF Notation “1” | “2” | “3a” | “3b”
Size 2 characters
Examples “3a” Level 3a course structure
 “1” Level 1 course structure

Data type CMILogic
Description A logical statement following the rules described in section 4.2.3.
BNF Notation *(Term *(Operator Term))
Size 255
Examples “(A5=passed)&A8”
 “{A4,A3,A6}&(B2|B3)”

AICC - CMI Guidelines for Interoperability

August-16-2004 222 CMI001 Version 4.0

 Data Types

Data type CMIScoreINI
Description Empty string (“”) or the following:

A score made up of up to three decimal numbers, separated by commas.
The order is significant. The first number represents the “raw” score, the
second number represents the maximum possible score, and the third
number represents the lowest possible score. Commas may have leading
and trailing spaces.

BNF Notation (CMIDecimal *2(*LWS “,” *LWS CMIDecimal)) | “”
Size 255 Characters
Examples “75,100,0” - Raw score of 75, maximum of 100, minimum of 0
 “75” - Raw score of 75
 “75,100” - Raw score of 75, maximum of 100
 “” - No score

Data type CMISIdentifier
Description CMI System Identifier: Alphanumeric group of characters that begins with a

single letter: A, B, or J and ends with an integer number. One to five numerals
may follow the letter.

BNF Notation (“A” | “B” | “J” | “a” | “b” | “j”) 1*5(DIGIT)
Size 6 characters
Examples “a01”
 “B00005”
 “J1”

Data type CMISInteger
Description A signed integer number from –32768 to +32768.
BNF Notation (“-“ | “+”) 1*5(DIGIT)
Size 7 characters
Examples “-16412”
 “+5”

Data type CMIString255
Description A set of ASCII characters with a maximum length of 255 characters.
Bindings Used *255(LCHAR)
Size

255 CHARACTERS

Examples

Data type CMIString255CSV
Description A set of characters with a maximum length of 255 characters. Carriage return,

line feed, and double-quotes (“)s are not allowed.
Bindings Used *255(CSV_OK | “,”)
Size 255 characters
Examples

Data type CMIString255INI
Description A set of characters with a maximum length of 255.. Carriage returns and

linefeeds are not allowed. All leading and trailing linear whitespace (tabs or
spaces) are discarded if present.

AICC - CMI Guidelines for Interoperability

August-16-2004 223 CMI001 Version 4.0

 Data Types
Bindings Used (*1(VIEWABLE) *(* LWS *1(VIEWABLE | LWS))) | “”
Size 255 characters
Examples

Data type CMIString4096
Description A set of characters with a maximum length of 4096 characters.
BNF Notation *4096(CHAR)
Size 4096 characters
Examples

Data type CMIString4096CSV
Description A set of characters with a maximum length of 4096 characters. Carriage return,

line feed, and double-quotes (“)s are not allowed.
BNF Notation *4096(CSV_OK | “,”)
Size 4096 characters
Examples

Data type CMIString4096INI
Description A set of characters with a maximum length of 4096 characters. Square brackets

(“ [] ”s) are not allowed. All embedded whitespace is included. All leading and
trailing whitespace is discarded if present.

BNF Notation (*1(INI_OK | “=”) *(*WHITESPACE *1(INI_OK | “=”))) | “”

Size 4096 characters
Examples

Data type CMIStudentName
Description Last name, first name and middle initial. Last name and first name are

separated by a comma. Alphabetic, space, period, dash, and upper-ASCII (per
ISO-8859) characters are allowed. Embedded spaces are also allowed .

BNF Notation (ALPHA | EXTENDED)
*(ALPHA | EXTENDED | “.” | “-“| LWS) “,”
*(LWS) (ALPHA | EXTENDED)
*(ALPHA | EXTENDED | “.” | “-“| LWS) (ALPHA | EXTENDED)

Size 255 characters
Examples “Hyde, Jack Q.”
 “Two-names, Kelly“
 “Wu , “
 “Schmidt, JF”

Data type CMITime
Description A chronological point in a 24 hour clock. Identified in hours, minutes and

seconds in the format: HH:MM:SS.SS Hours and seconds shall contain two
digits. Seconds shall contain 2 digits with an optional decimal point and up to
two additional digits.

BNF Notation 2(DIGIT) “:” 2(DIGIT) “:” 2(DIGIT) [“.” 1*2(DIGIT)]
Size 11 characters
Examples “12:02:45.56”
 “12:03:45”

AICC - CMI Guidelines for Interoperability

August-16-2004 224 CMI001 Version 4.0

 Data Types

Data type CMITimespan
Description A length of time in hours, minutes, and seconds shown in the following

numerical format:

HHHH:MM:SS.SS.

Where:

HHHH = Hours. Hours shall contain a minimum of 2 digits and maximum of
4 digits. The range of allowable values for hours is 00 – 9999.
Values for hours may have leading zeros.

MM = Minutes. Minutes shall consist of 2 digits. The range of allowable

values for minutes is 00 – 59.

SS = Seconds. Seconds shall consist of 2 digits. The range of

allowable values for seconds is 00 – 59.

.SS = Tenth/Hundredths of Seconds. This is the only optional element

for this data type. This element shall consist of 1 to 2 digits. The
range of allowable values is 01 - 99. Note that single digit values
have an implied trailing zero (e.g. “.1” and “.10” represent the
same value)

BNF Notation 2*4(DIGIT) “:” 2(DIGIT) “:” 2(DIGIT) [“.” 1*2(DIGIT)]
Size 13 characters
Examples “12:02:45.56”
 “0012:02:45.56”

Data type CMIurl
Description A fully qualified URL (Uniform resource locator)
BNF Notation PROTOCOL “://” (IP | DOMAIN_NAME) [“:” PORT] URL_PATH
Size 255 characters
Examples “http://somedomain.org/dir1/index.html”
 “https://somedomain.org/dir1/index.html”

Data type CMIurlEncNVPairList
Description A list of name/value (i.e. “name=value”) pairs separated by ampersands (“&” s).

The “name” represents data element (or variable) name and the “value” is the
value held by the “name” variable.

Both the “name” and the “value” are URL-encoded (see section 6.4.1.1)
representations of the actual values.

BNF Notation *(NVCHAR)“=”1*(NVCHAR) *(“&” 1*(NVCHAR)“=”1*(NVCHAR))
Size 255
Examples Name1=value1&Name2=value2

Data type CMIVersionNumber
Description A string indicating which version of this specification. (CMI001 – CMI Guidelines

for Interoperability) is implemented. Values are limited to the current and
previously released version numbers (see BNF notation below).

AICC - CMI Guidelines for Interoperability

August-16-2004 225 CMI001 Version 4.0

 Data Types
BNF Notation “1.0” | “1.1” | “1.2” | “1.3” | “1.4” | “1. 5” | “1.7” | “1.8” | “1.9” | “2.0” | “2.2” | “3.0” |

“3.0.1” | “3.4” | “3.5” | “4.0”
Size 255 characters
Examples “4.0”
 “3.5”

Data type CMIVocabulary
Description Used to attach specific vocabularies within contexts in a schema. Vocabulary

words must be complete and exact matches to those below.

See the each sub data type below for the valid list of vocabularies.

Mode
Status
Exit
Credit
Entry
Interaction
Result
Time Limit Action

Data type CMIVocabulary:Credit
Description A specific vocabulary limited to on of the following values: “credit” or

“no-credit”. Case sensitive
BNF Notation “credit” | “no-credit”
Size 9 characters
Examples “credit”
 “no-credit”

Data type CMIVocabulary:Credit-INI
Description A vocabulary limited to on of the following values: “credit” or

“no-credit”. The values are Case insensitive and only the first character is
significant. (But it is recommend to use the complete values for greater
compatibility)

BNF Notation (“C” | “c” | “n” | “N”) *9(INI_OK)
Size 10 characters
Examples “c”
 “Credit”
 “No-”

Data type CMIVocabulary:Entry
Description A specific vocabulary limited to on of the following values: “ab-initio”,

“resume”, or "" - (empty string)
BNF Notation “ab-initio” | “resume” | ""
Size 9 characters
Examples “ab-initio”
 “resume”

Data type CMIVocabulary:Exit
Description A specific vocabulary limited to on of the following values: “time-out”, “suspend”,

“logout”, or "" - (empty string)
BNF Notation “time-out” | “suspend” | “logout” | ""
Size 8 characters

AICC - CMI Guidelines for Interoperability

August-16-2004 226 CMI001 Version 4.0

 Data Types
Examples “time-out”
 “logout”

Data type CMIVocabulary:Interaction
Description A specific vocabulary limited to on of the following values: “true-false”

“choice”, “fill-in”, “matching”, "performance", "likert", "sequencing", or "numeric".
BNF Notation “true-false” | “choice” | “fill-in” | “matching” | "performance" | "likert" |

"sequencing"| "numeric"
Size 11 characters
Examples “matching”
 "numeric"

Data type CMIVocabulary:Mode
Description A specific vocabulary limited to on of the following values: “normal”, “review”, or

“browse”. All values are case sensitive.
BNF Notation “normal” | “review” | “browse”
Size 6 characters
Examples “normal”
 “browse”

Data type CMIVocabulary:Result
Description A specific vocabulary limited to on of the following values: “correct”

“wrong”, “unanticipated”, “neutral”, or a valid CMIDecimal value.
BNF Notation “correct” | “wrong” | “unanticipated” | “neutral” | CMIDecimal
Size 255 characters
Examples “correct”
 “3.5”

Data type CMIVocabulary:Status
Description A specific vocabulary limited to on of the following values: “passed”,

“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”
BNF Notation “passed” | “completed” | “failed” | “incomplete” | “browsed” | “not attempted”
Size 13 characters
Examples “passed”

Data type CMIVocabulary:Time Limit Action
Description A specific vocabulary limited to one of the following values: “exit,message”,

“exit,no message”, “continue,message”, or “continue,no message”
BNF Notation “exit,message” | “exit,no message” | “continue,message” | “continue,no

message”
Size 16 characters
Examples “exit,message”
 “continue,no message”

Data type CMIVocabulary:Why Left
Description A specific vocabulary limited to following values: “student selected”, “lesson

directed”, ”exit”, or “directed departure”.
BNF Notation “student selected” | “lesson directed” | ”exit” | “directed departure”.
Size 18 characters
Examples “student selected”
 ”exit”

AICC - CMI Guidelines for Interoperability

August-16-2004 227 CMI001 Version 4.0

 Data Types
 “directed departure”.

Data type CMIVocabularyINI
Description Used to attach specific vocabularies within contexts in a schema. Vocabulary

words must be complete and exact matches to those below.

See the each sub data type below for the valid list of vocabularies.

Mode
Status
Exit
Credit
Entry
Interaction
Result
Time Limit Action

Data type CMIVocabularyINI:Credit
Description A vocabulary limited to on of the following values: “credit” or

“no-credit”. The values are Case insensitive and only the first character is
significant. (But it is recommend to use the complete values for greater
compatibility)

BNF Notation (“C” | “c” | “n” | “N”) *9(INI_OK)
Bindings Used File, HACP
Size 10 characters
Examples “c”
 “Credit”
 “No-”

Data type CMIVocabularyINI:Entry
Description A vocabulary limited to on of the following values: “ab-initio”,

“resume”, or "" - (empty string). The values are Case insensitive and only the
first character is significant. (But it is recommend to use the
CMIVocabulary:Entry values for greater compatibility)

BNF Notation (“A” | “a “ | “R” | “r”) *9(INI_OK)
Size 10 characters
Examples “A”
 “resume”

Data type CMIVocabularyINI:Exit
Description A specific vocabulary limited to on of the following values: “time-out”, “suspend”,

“logout”, or "" - (empty string). The values are Case insensitive and only the first
character is significant. (But it is recommend to use the CMIVocabulary:Exit
values for greater compatibility)

BNF Notation (“T” | “t” | “L” | “l” |“S” | “s”) *8(INI_OK)
Size 8 characters
Examples “Time-oUT”
 “L”
 “suspend”

Data type CMIVocabularyINI:Interaction
Description A specific vocabulary limited to on of the following values: “true-false”

“choice”, “fill-in”, “matching”, "performance", "likert", "sequencing", or "numeric".

AICC - CMI Guidelines for Interoperability

August-16-2004 228 CMI001 Version 4.0

 Data Types
The values are case insensitive and only the first character is significant. (But it
is recommend to use the CMIVocabulary:Interaction values for greater
compatibility)

BNF Notation (“t” | “c” | “f” | “m” | "p" | "l" | "s"| "n" | “T” | “C” | “F” | “M” | "P" | "L" | "S"| "N")
 *11(CSV_OK)

Examples “MATCHING”
 “c”
 “performance”

Data type CMIVocabularyINI:Mode
Description A specific vocabulary limited to on of the following values: “normal”, “review”, or

“browse”. The values are case insensitive and only the first character is
significant. (But it is recommend to use the “complete” values for greater
compatibility)

BNF Notation (“n” | “r” | “b” | “N” | “R” | “B”) *7(INI_OK)
Size 8 characters
Examples “normal”
 “B”

Data type CMIVocabularyINI:Result
Description A specific vocabulary limited to on of the following values: “correct”

“wrong”, “unanticipated”, “neutral”, or a valid CMIDecimal value. The values
are case insensitive and only the first character is significant. (But it is
recommend to use the “complete” values for greater compatibility)

BNF Notation ((“c” | “w” | “u” | “n” |“C” | “W” | “U” | “N”) *22(CSV_OK)) | CMIDecimal
Size 255 characters
Examples “correct”
 “W”

Data type CMIVocabularyINI:Status
Description A specific vocabulary limited to on of the following values: “passed”,

“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”.

The values are case insensitive and only the first character is significant. (But it
is recommend to use CMIVocabulary:Status values for greater compatibility)

BNF Notation (“P” | “p” | “N” | “n” | “F” | “f” | “C” | “c” | “I” | “i” | “B” | “b”) *12(INI_OK)
Size 13 characters
Examples “pass”
 “p”
 “Not Attempted”
 “browsed”

Data type CMIVocabularyINI:Time Limit Action
Description A specific vocabulary limited to following values: “exit,message”, “exit,no

message”, “continue,message”, or “continue,no message”.

More explicitly : “exit” or “continue” followed by a comma (with leading trailing
spaces) , further followed by “message” or “no message”. Each of the 4 values
are case insensitive and only the first character is significant.

(Note: It is recommend to use CMIVocabulary:Time Limit Action values for
greater compatibility).

BNF Notation (“e” | “E” | “c” | “C”) *10(CSV_OK) *(LWS) “,” *(LWS)

AICC - CMI Guidelines for Interoperability

August-16-2004 229 CMI001 Version 4.0

 Data Types
(“M” | “m” | “N” | “n”) *10(CSV_OK)

Size 255 characters
Examples “E,n”
 “exit,no message”
 “continue , no message”

Data type CMIVocabularyINI:Why Left
Description A specific vocabulary limited to following values: “student selected”, “lesson

directed”, ”exit”, or “directed departure”. Each of the 4 values is case
insensitive and only the first character is significant.

(Note: It is recommend to use CMIVocabulary:Why Left values for greater
compatibility).

BNF Notation (“e” | “E” | “s” | “L” | “l” | “D” | “d”) *17(CSV_OK)
Size 18 characters
Examples “student selected”
 “E”
 “Directed”

Data type HacpCommand
Description Message type included in a HACP request message. See section 6.4 for a

description of each HACP message type.

This datatype has a vocabulary of the following (case insensitive) values:

GetParam
PutParam
ExitAU
PutInteractions
PutComments
PutPath
PutPerformance

BNF Notation (“GetParam| “PutParam” | “ExitAU” | “PutInteractions” | “PutComments” |

“PutPath” | “PutPerformance” | “getparam” | “putparam” | “exitau” |
“putinteractions” | “putcomments” | “putpath” | “putperformance”)

Size 15 characters
Examples “1”
 “0”

Data type HacpErrorNumber
Description Numbers corresponding to error conditions (see datatype HacpErrorNumber) in

a HACP response message. See section 6.4.8 for a description of HACP error
conditions.

The HacpErrorNumber(s) corresponding to (datatype) HacpErrorText are as
follows:

0 - Successful
1 - Invalid Command
2 - Invalid AU-Password
3 - Invalid Session ID

AICC - CMI Guidelines for Interoperability

August-16-2004 230 CMI001 Version 4.0

 Data Types
BNF Notation (“0” | “1” | “2” | “3”)
Size undefined
Examples “1”
 “0”

Data type HacpErrorText
Description Text describing error conditions corresponding to error numbers (see datatype

HacpErrorNumber) in a HACP response message. See section 6.4.8 for a
description of HACP error conditions.

BNF Notation (“Successful” | “Invalid Command” | “Invalid AU-Password” |
 “Invalid Session ID”)

Size 1
Examples “1”
 “0”

Data type HacpRequestMessage
Description
BNF Notation
Size undefined
Examples “1”
 “0”

Data type HacpResponseMessage
Description
BNF Notation
Size undefined
Examples “1”
 “0”

AICC - CMI Guidelines for Interoperability

August-16-2004 231 CMI001 Version 4.0

10.0 Augmented Backus-Naur Form (BNF) Notation

Backus-Naur Form (BNF) is a structured notation for describing data formats. BNF has many variations. The BNF
described in this section is an augmented form of BNF partially derived from RFC1945 - Hypertext Transfer
Protocol -- HTTP/1.0. (Please note that this section will be the authoritative source for interpreting BNF notation in
this document).

The BNF notation described in this section is used to define the formatting rules for all data types included this
specification.

10.1 Augmented Backus-Naur Form (BNF) Constructs
This augmented BNF used in this specification includes the following constructs:

NAME = DEFINITION

The name of a rule is simply the name itself (without any enclosing "<" and ">") and is separated from its
definition by the equal character "=". Whitespace is only significant in that indentation of continuation
lines is used to indicate a rule definition that spans more than one line. Certain basic rules are in uppercase,
such as SP, LWS, CRLF, DIGIT, ALPHA, etc. Angle brackets ("<" and ">") are used within definitions
whenever their presence will facilitate discerning the use of rule names.

"literal"

Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.

rule1 | rule2
Elements separated by a bar ("I") are alternatives , e.g. “Yes | no" will accept yes or no.

(rule1 rule2)
Elements enclosed in parentheses are treated as a single element. Thus, "(elem (foo | bar) elem)" allows the
token sequences "elem foo elem" and "elem bar elem".

*rule

The character "*" preceding an element indicates repetition. The full form is "<n>*<m>element" indicating
at least <n> and at most <m> occurrences of element. Default values are 0 and infinity so that "*(element)"
allows any number, including zero; "1*element" requires at least one; and "1*2element" allows one or two.

[rule]

Square brackets enclose optional elements; "[foo bar]" is equivalent to "*1(foo bar)".

N rule
Specific repetition: "<n>(element)" is equivalent to "<n>*<n>(element)"; that is, exactly <n> occurrences
of (element). Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three alphabetic characters.

; comment

A semi -colon, set off some distance to the right of rule text, starts a comment that continues to the end of
line. This is a simple way of including useful notes in parallel with the specifications

AICC - CMI Guidelines for Interoperability

August-16-2004 232 CMI001 Version 4.0

10.2 Basic BNF Rules
The following BNF rules are used to describe the more common data types (in this document) are also as the basic
“building blocks” used to construct more complex rules in the following sections. All ASCII character code values
shown are in decimal numbers. All extended range ASCII character codes (128 -256) must conform to IS0-8859
character sets.

CR = < ASCII Character (13) -- carriage return >
LF = < ASCII Character (10) -- linefeed >
SP = < ASCII Character (32) -- space >
TAB = < ASCII Character (9) -- horizontal-tab >
<"> = < ASCII Character (34) -- double-quote mark >
CRLF = CR LF
UPPERCASE = < any ASCII uppercase letter "A".."Z" >
LOWERCASE = < any ASCII lowercase letter "a".."z" >
CTL = < Control ASCII characters (0 – 31) and DEL (127) >
CTLEXT = < Extended ASCII control characters 128 – 159 >
EXTENDED = < Extended ASCII characters (160 – 255).

 Viewable per ISO-8859 defined character sets>

ALPHA = UPPERCASE | LOWERCASE
DIGIT = < any ASCII digit "0".."9" >
HEX = DIGIT | “A” | “B” | “C” | “D” | “E” | “F”
ESCAPE = “%” HEX HEX
LCHAR = < All ASCII characters except CTL>
INTEGER = 1*DIGIT
DECIMAL = [“-“]*DIGIT ["."] 1*DIGIT
NUMERIC = INTEGER | DECIMAL
LWS = SP|TAB
VWS = CR|LF
WHITESPACE = SP|TAB|CR|LF
ID = 1*255(DIGIT | ALPHA | “_” | “-“)
DATE = 4DIGIT “/” 2DIGIT “/” 2DIGIT
TIME = (2DIGIT | 4 DIGIT) “:” 2DIGIT “:” 2DIGIT [“.” 1*2(DIGIT)]
STIME = 2DIGIT “:” 2DIGIT “:" 2DIGIT

FILE_SAFE = “.”|”;” | “{“ | “}” | “+” | “~” | “`” | “!” | “@” | “#” |

“$” | “%” | “^” | “&” | “(“ | “)” | “_” | “-“ | “[“ | “]” |
“=”

INI_UNSAFE = “[“ | “]” | “=”

INI_SAFE = <”> | “\” | “/” | “?” | “,” | “.” | “<” | “>” |

”:” | ”;” | “{“ | “}” | “+” | “~” | “`” | “!” | “@” | “#” | “$” | “%” |
“^” | “&” | “*” | “(“ | “)” | “_” | “-“ | “|”

CSV_SAFE = | “\” | “/” | “?” | “.” | “<” | “>” | ”:” | ”;” |

“{“ | “}” | “+” | “~” | “`” | “!” | “@” | “#” | “$” | “%” | “^” | “&” |
“*” | “(“ | “)” | “_” | “-“ | “|” | “[“ | “]” | “=”

SPECIAL = INI_SAFE | INI_UNSAFE

VIEWABLE = ALPHA|DIGIT|EXTENDED|SPECIAL

AICC - CMI Guidelines for Interoperability

August-16-2004 233 CMI001 Version 4.0

;
; URL & HTTP Specific BNF
;

SAFE = “$” | “-“ | “_” | “.”
UNSAFE =
EXTRA = “!” | “*” | “'” | “(” | “)” | “,”

SAFE_URL = “$” | “-“ | “_” | “@” | “.” | “&” | “+” | “-“
EXTRA_URL = “!” | “*” | “"” | “'” | “|” | “,”

NVCHAR = ESCAPE | ALPHA | DIGIT | EXTENDED | SAFE

PROTOCOL = < Case insensitive “http” or “https” >
IP = 1*3(DIGIT) 3(“.” 1*3(DIGIT))
DOMAIN_NAME = 1*(ALPHA|“-“) 1*(“.” 1*(ALPHA|“-“))
PORT = *DIGIT
SEGMENT = *(ALPHA | DIGIT | SAFE_URL | EXTRA_URL | ESCAPE)
URL_PATH = “/” *(SEGMENT) *(“/” *(SEGMENT))
URL = PROTOCOL “://” (IP | DOMAIN_NAME) [“:” PORT] URL_PATH

; Name/Value Pair list
NVPRLIST = 1*(NVCHAR)“=”1*(NVCHAR) *(“&” 1*(NVCHAR)“=”1*(NVCHAR))

AICC - CMI Guidelines for Interoperability

August-16-2004 234 CMI001 Version 4.0

10.3 AICC Style INI Related BNF Rules

; non-whitespace characters allowed in INI format
INI_OK = ALPHA|DIGIT|EXTENDED|INI_SAFE

INI_CMT_SAFE = <”> | “\” | “/” | “?” | “,” | “.” |

”:” | ”;” | “{“ | “}” | “+” | “~” | “`” |
 “!” | “@” | “#” | “$” | “%” | “^” | “&” |
 “*” | “(“ | “)” | “_” | “-“ | “|” | “=”

INI_CMT_OK = ALPHA|DIGIT|EXTENDED|INI_CMT_SAFE

; text string with embedded spaces
INI_NV = *1(VIEWABLE) *(*LWS *1(VIEWABLE))

; a keyword/value pair i.e. “x = y”
INI_NAME_VALUE = *LWS INI_NV *LWS “=” *LWS INI_NV *LWS CRLF

; an INI comment
INI_COMMENT = *LWS “;” *(VIEWABLE|LWS) CRLF

; AICC style INI Group Name
INI_SECTION = *LWS “[“ 1*(INI_OK) “]” *LWS CRLF

; AICC style INI “free form” data
INI_FREEDATA = *WHITESPACE *(INI_OK | “=” | WHITESPACE) *WHITESPACE CRLF

; Normal Group
CMIGroupINI = INI_SECTION *(INI_NAME_VALUE | INI_COMMENT | WHITESPACE)

; Free-Form Group
CMIGroupFreeFormINI = INI_SECTION *(INI_FREEDATA)

; Definition of AICC style INI file format
CMIFormatINI = *(WHITESPACE | INI_COMMENT)

*(CMIGroupINI| CMIGroupFreeFormINI)

; Definition of AICC style INI file format
AICC_INI_FORMAT = *(WHITESPACE | INI_COMMENT)

*(INI_SECTION (INI_FREEDATA |
*(INI_NAME_VALUE |

INI_COMMENT |
 WHITESPACE)

)
)

*(WHITESPACE | INI_COMMENT)

AICC - CMI Guidelines for Interoperability

August-16-2004 235 CMI001 Version 4.0

10.4 HACP Related BNF Rules

; List of valid version names
;
CMIVER = “2.0” | “2.1” | “2.2” | “3.0”| “3.0.1”|

“3.0.2”| “3.4”| “3.5” | “4.0”

; HACP Request Message related constructs
vCMIVER = < url-encoded, CMIVER >
NmCOMMAND = < url-encoded, case insensitive string, “command” >
NmVERSION = < url-encoded, case insensitive string, “version” >
NmSESSION_ID = < url-encoded, case insensitive string, “session_id” >
NmAU_PASSWORD = < url-encoded, case insensitive string, “AU_PASSWORD” >
NmAICC_DATA = < url-encoded, case insensitive string, “AICC_DATA” >
VPASSWORD = < Url-encoded, *255(LCHAR) >
vSESSION_ID = < Url-encoded, *255(LCHAR) >
vAICC_DATA = < Url-encoded, *AICC_INI_FORMAT >
vHACP_COMMAND = “GetParam| “PutParam” | “ExitAU” | “PutInteractions” |
 “PutComments” | “PutPath” | “PutPerformance”

; == HACP Response Message related constructs ==
NmrAICC_DATA = <case insensitive string “AICC_DATA” >
NmrError_Text = <case insensitive string “error_text” >
NmrError = <case insensitive string “error” >
NmrVersion = <case insensitive string “version” >

Vendor_Error_Text = *255(INI_OK)

vERROR_TEXT = “Successful” | “Invalid Command” | “Invalid AU-Password” |

 “Invalid Session ID”

vERROR_CODE = “0” | “1” | “2” | “3”

NVPAIR1 = NmCOMMAND “=” vHACP_COMMAND
NVPAIR2 = NmVERSION “=” vCMIVER
NVPAIR3 = NmSESSION_ID “=” vSESSION_ID
NVPAIR4 = NmAU_PASSWORD “=” vAU_PASSWORD
NVPAIR5 = NmAICC_DATA “=” vNmAICC_DATA

; Definition of HACP request Message
HACP_REQUEST = NVPAIR1 “&” NVPAIR2 “&” NVPAIR3 [“&” NVPAIR4] “&” NVPAIR5
 <All NVPAIR’s are “&” separated and can be in any order>
 <NVPAIR5 is not required for GetParam Messages>

; HACP response Message
HACP_RESPONSE = NmrError “=” vERROR_CODE CRLF
 [NmrError_Text “=” vERROR_TEXT CRLF]
 [NmrVersion “=” CMIVER CRLF]
 [NmrAICC_DATA “=” [AICC_INI_FORMAT]]
 < AICC_DATA name/value pair is required only
 for GetParam response messages >

AICC - CMI Guidelines for Interoperability

August-16-2004 236 CMI001 Version 4.0

10.5 CSV Related BNF Rules

;
FIELD_NAME = (*255(ALPHA|DIGIT|CSV_SAFE)) |

 < Reserved AICC Header Name >

; All chars except CR LF, DEL, and <”>
CSV_OK = ALPHA | DIGIT | EXTENDED | LWS | CSV_SAFE
; Quoted or not quoted – embedded commas are allowed inside quoted
CSV_ELEMENT = (*CSV_OK | (<”> *(CSV_OK | “,”) <”>))
; Quoted or not quoted
HEADER_NAME = (FIELD_NAME | (<”> FIELD_NAME <”>))
; Comma separated list
CSV_HEADER = (LWS HEADER_NAME LWS *("," LWS HEADER_NAME LWS)) CRLF
; Comma separated list with leading/training linear whitespace
CSV_RECORD= (LWS CSV_ELEMENT LWS *("," LWS CSV_ELEMENT LWS)) CRLF

; AICC Comma Separated Values (CSV) Format definition
CSV_FORMAT = CSV_HEADER *CSV_RECORD

10.6 “AICC Script” BNF Rules

; Format rules for an “AICC script” – statement for logical expressions
; Used in completion requirements and/or Perquisites

Expr = *(Term *(Operator Term))

SystemID = (“A” | “B” | “J” | “a” | “b” | “j”) 1*5(DIGIT)

Status = “passed” | “completed” | “failed” | “incomplete” |
 “browsed” | “not attempted” | “P” | “p” | “C” | “c” |
 “F” | “f” | “I” | “i” | “B” | “b” | “N” | “n”

Operator = “&” | “|”

Factor = SystemID |
 (“(“ Expr *(“,” Expr) “)”) |
 (“{“ Expr *(“,” Expr) ”}”) |
 (DIGIT “*” “{“ Expr *(“,” Expr) ”}”)

n-Term = Factor *(Operator Factor)
unaryTerm = “~” Factor
equTerm = SystemID “=” Status

Term = n-Term | unaryTerm | equTerm

AICC - CMI Guidelines for Interoperability

August-16-2004 237 CMI001 Version 4.0

10.7 Interactions related BNF Rules

PERF_SAFE = “-“ | “_”
PERF_OK = DIGIT | ALPHA | LWS | PERF_SAFE
PERF_VAL = 1*PERF_OK
ENUM = LOWERCASE | DIGIT
SEQ = ENUM 1*(“,” ENUM)
MSEQ = (ENUM “.” ENUM) *(“,” (ENUM “.” ENUM))
PSEQ = ([ID “.”] PERF_VAL) *(“,” ([ID “.”] PERF_VAL))

;True-False type
T_TYPE = “0”|”1”|”t”|”f”|”T”|”F”
;Choice type
C_TYPE = ENUM | (“{“ SEQ “}” *(“;” “{“ SEQ “}”))
;Fill-in type
F_TYPE = [“<case>”] 1*CSV_OK
;Matching Type
M_TYPE = MSEQ | (“{“ MSEQ “}” *(“;” “{“ MSEQ “}”))
;Performance Type
P_TYPE = PSEQ | (“{“ PSEQ “}” *(“;” “{“ PSEQ “}”))
;Likert Type
L_TYPE = ENUM

RESPONSE = T_TYPE | C_TYPE | F_TYPE | M_TYPE | P_TYPE | L_TYPE

INTERACTION_TYPE = (“T” | “t” | “F” | “f” | “M” | “m” | “P” |

 “p” | “S” | “s” | “L” | “l” | “C” | “c”) *11(INI_OK)

; Interactions fields Data types
InDATE = DATE
InTIME = TIME
InSTUDENT_ID = ID
InCOURSE_ID = ID
InLESSON_ID = ID
InTYPE_INTERACTION = INTERACTION_TYPE | NUMERIC
InINTERACTION_ID = ID
InOBJECTIVE_ID = ID
InCORRECT_RESPONSE = <”> RESPONSE <”>
InSTUDENT_RESPONSE = <”> RESPONSE <”>
InRESULT = NUMERIC | “C” | “c” | “U” | “u” | “W” | “w” | “N” |
“n”
InWEIGHTING = NUMERIC
InLATENCY = STIME

AICC - CMI Guidelines for Interoperability

August-16-2004 238 CMI001 Version 4.0

AuSYSTEM_ID = ALPHA 1*DIGIT
AuTYPE = *255(CSV_OK)
AuCOMMAND_LINE = *255(CSV_OK)
AuFile_Name = <URL or file spec – need BNF for each>
AuMastery_Score = *DIGIT
AuMAX_SCORE = NUMERIC
AuMAX_TIME_ALLOWED = STIME
AuTime_Limit_Action =
AuSystem_Vendor = *255(CSV_OK)
AuCORE_VENDOR = *255(CSV_OK | “’”)

AICC - CMI Guidelines for Interoperability

August-16-2004 239 CMI001 Version 4.0

11.0 Glossary

ASCII American Standard Code for Information Interchange. The de facto standard for

the code numbers used by computers to represent all the upper and lower-case
Latin letters, numbers, punctuation, and certain device control codes. The
original version of ASCII (US-ASCII) has only 128 codes defined. “Extended”
(or internationalized) versions of ASCII contain the original 128 codes plus an
additional 128 for a total of 256.

AU Assignable Unit. A module of computer based learning content (or CBT) that

can be launched and tracked by a CMI system . The smallest logical unit of
learning content in a course.

CBT Computer-Based Training. Learning material wholly (or partially) in computer

media form. Commonly known as “learning content”. Assignable units (AU’s)
are considered a type of CBT.

CMI Computer Managed Instruction. A system for launching and tracking learning

content. Commonly known as a Learning Management System (LMS)

Course A logical collection of AU’s with metadata describing organization, launch data,

and sequencing rules.

ECMAScript ECMAScript is the ISO standard version of JavaScript. In this document the use

of the term "JavaScript" is actually a reference to ECMAScript.

HACP HTTP/S-Based AICC/CMI Protocol.

HTTP Hypertext Transfer Protocol.

HTTPS Secure HTTP. HTTP protocol encrypted using secure sockets layer (SSL).

HTTP/S HTTP or HTTPS

LMS Learning Management System.

URL Uniform resource locator.

URL-encoding A method of encoding text for HTTP messages . See section 6.4.1.1 URL-

Encoding/Decoding

US-ASCII The original version of ASCII with only 128 defined codes. See ASCII.

AICC - CMI Guidelines for Interoperability

August-16-2004 240 CMI001 Version 4.0

12.0 References

ISO-8859 Information Processing -- 8-bit Single-Byte Coded Graphic Character Sets – Parts 1

thru 10.

ISO/IEC 11578 - Remote Procedure Call (RPC)

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=2229

Leach and Salz, Draft RFC, “UUIDs and GUIDs”, Feb 04 1998
http://www.webdav.org/specs/draft-leach-uuids-guids-01.txt

T. Berners-Lee et al, RFC 1945, " Hypertext Transfer Protocol -- HTTP/1.0", May 1996.

http://ietf.org/rfc/rfc1945.txt?number=1945

T. Berners-Lee et al, RFC 1738, "Uniform Resource Locators (URL)", Dec 1994.

http://ietf.org/rfc/rfc1945.txt?number=1945

US-ASCII Coded Character Set--7-Bit American Standard Code for Information Interchange,
ANSI X3.4-1986.

AICC - CMI Guidelines for Interoperability

August-16-2004 241 CMI001 Version 4.0

INDEX

Backus-Naur Form (BNF)231
BNF ..231
CMIBlank ...212
CMIBoolean ..212
CMIComment4096INI..212
CMIDate ...213
CMIDecimal ..213
CMIDirectoryNameFull ..213
CMIFeedback ...214
CMIFeedback:Choice ..214
CMIFeedback:Fill-in ...214
CMIFeedback:Likert ...214
CMIFeedback:Matching ..215
CMIFeedback:Numeric ...215
CMIFeedback:Performance215
CMIFeedback:Sequencing215
CMIFeedback:True-False215
CMIFeedbackCSV ..215
CMIFeedbackCSV:Choice.....................................216
CMIFeedbackCSV:Fill-in ..216
CMIFeedbackCSV:Likert ..216
CMIFeedbackCSV:Matching216
CMIFeedbackCSV:Numeric217
CMIFeedbackCSV:Performance.........................217
CMIFeedbackCSV:Sequencing217
CMIFeedbackCSV:True-False217
CMIFileNameFull ..217
CMIFormatCSV ...218
CMIFormatINI...218
CMIGroupFreeFormINI ...220
CMIGroupINI ..219
CMIIdentifier ...220
CMIIdentifierDevID ...220
CMIIdentifierGUID ..221
CMIIdentifierINI..221
CMIInteger ...221
CMILevel ..221
CMILogic ..221
CMIScoreINI ...222
CMISIdentifier ..222
CMISInteger..222
CMIString255 ...222

CMIString255CSV ..222
CMIString255INI..222
CMIString4096 ...223
CMIString4096CSV ..223
CMIString4096INI ...223
CMIStudentName ...223
CMITime ...223
CMITimespan ...224
CMIurl..224
CMIurlEncNVPairList ...224
CMIVersionNumber ..224
CMIVocabulary ..225
CMIVocabulary:Credit ...225
CMIVocabulary:Credit-INI225
CMIVocabulary:Entry ...225
CMIVocabulary:Exit..225
CMIVocabulary:Interaction226
CMIVocabulary:Mode ..226
CMIVocabulary:Result ..226
CMIVocabulary:Status ..226
CMIVocabulary:Time Limit Action226
CMIVocabulary:Why Left226
CMIVocabularyINI ...227
CMIVocabularyINI:Credit227
CMIVocabularyINI:Entry ...227
CMIVocabularyINI:Exit ..227
CMIVocabularyINI:Interaction227
CMIVocabularyINI:Mode ..228
CMIVocabularyINI:Result228
CMIVocabularyINI:Status228
CMIVocabularyINI:Time Limit Action228
CMIVocabularyINI:Why Left229
Core.Output File......................... 12, 16, 18, 156, 158, 159
Core.Student Id ...12, 159, 162, 163, 164, 177, 181, 182,

183, 184
Core.Student Name12, 16, 17, 159, 177
HacpCommand..229
HacpErrorNumber ...229
HacpErrorText ..230
HacpRequestMessage ..230
HacpResponseMessage ..230
Startup File..............................50, 155, 157, 158, 159, 160

