AICC - CMI Guidelines for Interoperability

DOCUMENT NO. CMI001

CMI Guidédinesfor Interoperability

AICC

ORIGINAL RELEASE DATE 25-Oct-93
Revision 4.0 release 16-Aug-2004

THISDOCUMENT ISCONTROLLED BY:

POINT OF CONTACT:

PREPARED ON PC

AICC CMI| Subcommittee

ALL REVISIONSTO THE DOCUMENT SHALL BE APPROVED
BY THE ABOVE ORGANIZATION PRIOR TO RELEASE.

Scott Bergstrom
AICC Administrator
P.O. Box 472
Sugar City, ID 83448-0472

Telephone: (208) 496-1136
E-mail address: admin@saicc.org

FILED UNDER CMI001v4.doc

Cavesats...

a 1992 - 2004 AICC
All rights reserved

The information contained in this document has been assembled by the AICC as an informational resource.
Neither the AICC nor any of its members assumes nor shall any of them have any responsibility for any use
by anyone for any purpose of this document or of the datawhich it contains.

August-16-2004

1 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Contributing Editors

William A. McDonald — Alteon (A Boeing Company), AICC CMI Subcommittee Chair
Jack Hyde - AICC Technical Advisor
Ann Montgomery - AICC Technical Coordinator

Partial List of Contributors

Mark Schupp — Integrity el earning Bernard Bouyt — Airbus Industrie
Jacques Talvard— Airbus Industrie Paul Bishop — Plan Three Solutions
Brett Watters— Geometrix Ed Cohen — Plateau Systems

Bradley K. Weage — Learn.Net Jon Conradt — Gallup

Greg Tobin— Heathkit Educational Systems Jonathan Zemple - IBM

Nathan Summers— FutureMedia Paul Roberts— Question Mark, Ltd.
Tom King - Macromedia John Kleeman — Question Mark, Ltd.

August-16-2004 2 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Revision History

REV 4.0 (June2004) Complete rewrite and reorganization of all sections. See CM1001 version 3.5 for a
complete revision history back to version 1.0. Thisrevision isintended to be
functionally equivalent to CM1001 version 3.5

.Major changesinclude:
- All definitions were narrowed and clarified.

Conflicting rules and statements clarified/resolved.
Structured notation was added for every data element to define data types, range
of data, and data vocabularies.
Communication and course structure data model s separated from individual
bindings (methods of implementation). All bindings were mapped to the data
models in separate sections.
The content of all appendices (Appendix A, and Appendix B) were merged into
the main body of the document.

August-16-2004 3 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Table of Contents

1.0
1.1
1.2
1.3 DOCUMENT ORGANIZATION
14 CONFORMANCE REQUIREMENTScevitrieeetieseseessesesssssssesssasssssnsssssssssesssnsns 11
1.4.1 File-based Environments
1.4.2 WED-DASEA ENVITONMIENTSceiiiictieceece sttt e b bbb e bbb s be st st sbesbssssbsnabess 11
2.0 COMMUNICATION DATA MODEL oottt et as st ss s et se et sasbs s s bs s et snnas 12
2.1 (0] = S

211 (000 =TS (00 (<01 0

2.1.2 COore.SUAENE NAME ..ottt s aenn

213 COre.OULPUL Fil€..uuiireeieecccr sttt

214 COore.Lesson LOCALION........ccccvveueereeeereieeseetee et ses e sessesenes

2.15 (@00] <X @1 <o || A

2.1.6 COre.LESSON STALUS.....ooveeeecececeeeee s s

2.1.7 (@00] =X o T

218 COTEENIIY ...

2.1.9 COre.FIEPaAtN ... s

2 0 O T O] =T oo | = OO

2111 COre.SeSSION TIMB...oeieceicsececeie ettt st

2.1.12 COreTotal TIME. .ttt

2.1.13 COre.LeSson MOGE.........ccvceiieiiceeisee ettt
2.2 SUSPEND DATA .ottt s st sa b se st st sanin
2.3 LAUNGCH DATA ..ottt sttt sssas b s tensse e
2.4 COMMENTS FROM LEARNER........ccoetiteteeeeeteressestesesessssssesssesbessssssssesssnsssssses
25 ITEMIZED COMMENTS FROM LEARNER.....ccoiviteieeseseeeseseeressssessesssssssssesens

251 Itemized CommeENtS From LEArNEr .CONEENTcvvcieeeeceseee ettt sas s b e rsnsbe e

25.2 Itemized CommENtS From LEAIrNEr .DALE...........ccviiieeiceeeeseee ettt e s st rsnsbe s

25.3 Itemi zed Comments From Learner.Location.

254 Itemized ComMmENLS From LEar NEI . TIME ...t st b e s bbb n b
2.6 COMMENTS FROM LIMIS....oet ettt ettt et sttt ettt b st sttt s e b ettt ebe st st st ebe bt sbabe st sesbess st neane
2.7 EVALUATION

271 Evaluation.ComMMENLS _Fil€......ccviicrsiccsseee sttt s st

272 EVAlUALION.COUMSE_ID ...ttt ettt bbb s s s s en st essnas

2.7.3 Evaluation.Interactions_File

274 Evaluation.ObjECtIVE_STAIUS FilE......cviircercceersecer st s et ssssssssessssesesenas

275 EVAlUGLION.PAIN_FIT@.....cceeeeceee sttt s et

2.7.6 Evaluation.Performance_File
2.8 (@ =3 =0 AV =S TSRS

2.8.1 L@ o= 1 Y= 1 0 OO

282 Objectives.Score

2.8.3 O ECLIVES. SLALUS. ... evevveieeeieteieieie ettt a sttt a sttt s bt a st bbb et et et e b e se bt et et et b e ae b et et esn s e b et esasabebesasatebesnsntesasas

284 OB ECHIVES.DALE ...ttt ettt ettt s st a bbbttt b e b bbbt e s et b e ae bbb e ae st et e s n s et et esasnbebnsnsatesanas

285 Objectives.Time

2.8.6 OB ECLIVES.MASLENY TIME......ceceieceete sttt b et s st es st s s st s s tee
2.9 S 0] = N N

291 Student Data.Attempt Number

2.9.2 S 000 (S a1 BT\ = TR 1 1=

293 SUAENE DAL IMASLENY SCOME.....eureeieireiereeereeeseseressssee s sessessesessssssesesssssessessssessessssssssssssssessssssnssssesssnsesssssssnss

294 Student Data.MaX TIME AHTOWE..........oveiieeeeieieceseeese et sttt sttt se e st e e s be st e b e e s be st s e sbaeenas

August-16-2004 4 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

295 Student Data. Time Limit ACHION ..ottt
296 Student Data. Tries DUring LESSON........ccccvecrreecrreeerrersesersenesneseereseens
297 Student Data.SessioNS JOUMNAl...........oocererereeererenrerenereseeeseseeeeenenens
29.71 Student Data.Sessions Journal.Lesson SCOore.........oorneneeerereneens
2.9.7.2 Sudent Data.Sessions Journal.Lesson Status.
210 STUDENT PREFERENCE.......costueertueenseeenserenstrenstsessssesssssssssssssssssessssesssssssssssesas
210.1 Student Preference. Audio... ...
2.10.2 Student Preference.Language.........ccocceeeeuerrereeesiesnessesssssssesessensnns
2.10.3 Student Preference.Lesson TYPE......oeererenseessnesssssssessssesssnsens
2.10.4 Student Preference.Speed... ...t
2105 Student PreferenCe. TEXEcoceeeiereneireeireeireesereeseseeseseesesessesessseenns
2.10.6 Student Preference. TeXt COolOr.......oireeireeireneneireneereeeneieeseiees
2.10.7 Student Preference. Text LOCAtioN.........ccvcereeereereneerenseneeeneeeensienns
2.10.8 StUAENt Prefer@nCE.TEXE SIZE.....cciieeereeerereeeerireeesis e sessesesesesss et ssss e s s s st se st sessananssesenssnseens
2.10.9 SUAENt Prefer@NCE.VITUEO. ...ttt a et et
2.10.10 Student Preference.Windows
200 INTERACTIONS ... tueeereeereseeseseesesesseaseseessssssessssesssssssssessssesessessessssessssssssassesssesassessssassssssssasssssesesssssssssssssssssssassessnsesanes
80 0 R 1= = T o T 1 5 OO
2.11.2 Interactions.Objectives
211.3 Interactions.Date
2114 Interactions.Time
2115 Interactions.Type
2.11.6 INteractions.COrreCt RESPONSES........ccccrureieerireserieiresesssessessssessssssssessssssssssssssssssssssesssssessssssssesssssassessssssssesesns
b O 01 (= Yox o I =Ko o141 o T
2.11.8 Interactions.Student Response
0 T g1 (== Tox o 1 o3 U= O
2.11.10 Interactions.Latency.
212 PATHS
AN R == 11 3 o Tor o 0 1 5 OO OO
2.02.2 PAINS.IDALE.....c.ccee ettt e Rttt
2123 Paths.Time
2024 PAtNS.SHAIUS. ... ceeeterecerieireie ettt bbbt £k R ARt
2125 PatNSMNY LEFL ...ttt bbb a st
212.6 Paths.Timein Element
213 STUDENT DEMOGRAPHICS.....cotueutueunteeinetsesstsessssessssesssstssessssessasesssstssssssssssessssssssssssssssssssssssstssssssnssssssssssssssssssssssesaees
2131 Student DemographiCS.City ...t sssse st ssessssssssesssse s sssssssessassessssssssesnns
2132 Student DemographiCs.Class.......cvererernesesnesesssesesesssssesennens
2133 Sudent Demographics.Company
2134 Student DemOgrapNiCS.COUNLIY.......couuuiereeereerreseereieetiessi e ss e enaes 100
2135 Student Demographics.Experience 101
213.6 Student DemographiCs.Familiar NAIME ...
2.13.7 Student DemographiCS.INSIIUCIOr NAIME ..ot enans
2.13.8 Student Demographics.Native Language.
2139 StUdent DemMOGraphiCS.SIALE........ccviicreirecc ettt ettt s antnn
2.13.10 Student DemographiCS. SIrEEt AAUIESS.........ccccicicceeeeee et antees
2.13.11 Student Demographics.Telephone
2.13.12 Sudent DemOgr aPhi CS. Tl ...ttt ae et s e s s s e s snsees
2.13.13 Student DemographiCS. YEarS EXPEIiENCE.......ccvrirererecieresesee s sessssssssssse e ssssssssesssssssssssssesssssssess 107
204 LESSON_ID ittt s R R bR 109
30 COURSE STRUCTURE DATA MODEL ..ovsirrerneecnreeensesessisesssesssesssssssssssssssssssns 110
3.1 COURSE ...euvurerereeressesessesssessssesssssessssessssssssassssssssssssssesesssssssssssessssessssessssessssassssassssasssssnsessesessnsessesssssnsessnsessssesnnsesnssessesansns 113
311 COUNSE.CTEALON ...ttt ettt et e s e £ £ e s e e £ e ne e e et e et ne s 113
312 COUISELID ettt E £ £ R £ e e £ 8 £ e e S nE e e e e e e e e e ee e
313 Course.System
314 COUI S THI .ttt bbb bbb bbbttt

August-16-2004 5 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

315 COUMSELLEVEL ...t bbb bbbttt
3.1.6 Course.Max FieldS CST ...t essesesssenenens
3.1.7 Course.Max FIeldS ORT ..o st esessssssesesssssenens
318 CoUrse.TOtal AUS......oeeeereerreree et
3.1.9 Course.Total BIOCKS........ccocourireririeirireneeirereeie st
3.1.10 Course.Total ODJECLIVES..........ccoveeirreerreerreer e
3.1.11 Course.Total Complex ObjeCliVES........ccovrirererrirererrrese s
3.1.12 Course.Version
3.2 COURSE BEHAVIOR ...cuuiiiiiieeseisessisens st s st sesss sttt ssssssnen
321 Course Behavior Max NOrmal...........cecneeineeeneeseneesensineseneeens
3.3 COURSE DESCRIPTION
3.4 COURSE ELEMENTS....ccntiritirietnie et ssssssaes
34.1 Course ElementS.SyStEM IDcccevverveerreres s sesesessseseens
342 Course E1emMentS.DEVEIOPEN D ..o s
343 Lo 01 ol 07 | T = TP
344 Course Elements.Description
345 COUNSE EEIMENTS. TYPE....coueeceieciieeieietie e e bbbt
34.6 Course ElementS.ComMaN LiNE ... se sttt sessssesssssnns
347 Course Elements.File Name
34.38 CoUrse ElEMENIS.MASLENY SCOM ...ttt se st s e bbbt s s sas s ssnaas
34.9 COUrSE EIEMENES.IMBX SCOT @ucuerieireiieisesteee ettt b eea bbb bbbttt
3.4.10 Course Elements.Max Time Allowed
3.4.11 Course ElementS. Time Limit ACHON........couieirieiricirieeneiees st
3.4.12 Course Elements.Devel OPMENt SYSLEML.......ccvvceiirirenieseisessses s sesssssesssssssssesss s ssssssssssssssessssssssess
3.4.13 Assignable Unit.Launch Data
3.4.14 Course Elements.Web Launch Parameters..........coorrerrnneseninsesssesesesssesesessssssssessssssssessssssssesssseees
3.4.15 Course EleMENntS.AU PaSSWOIcccrrereeerirerresieesesesssesessssssesessssesssssesssssssssssssssssesssssessssssssessssssssessssssssess
3.4.16 Course Elements.Members
3.4.17 CoUrse ElementS.Prer@QUISITE ..ottt
3.4.18 Course ElementS.COmMPIELIONS.........couirrierrcireeeeiees e enans
3.4.18.1 Course Elements.Completions.Requirement
3.4.18.2 Course Elements.Completions.SatUsS if TIUE.......cccccereecerercctc et sssssns
3.4.18.3 Course Elements.Completions.NEXt AU if TIUEccueveecerercce ettt sssssens
3.4.184 Course Elements.Completions.Goto after Next
3.5 LEVELS OF COMPLEXITY wooiuttriuctreueteussessesessesessessestssssesessssesssssssssesassssssssesssssssssessssesssssssssssntsssnssssssessssessssssassssnssssans
3.5.1 COUrSE LEVEI MAPPINGceirirereeiririsieirisissesesssesssssssesssstessssssssssssssssessssssssessssssssssesssssssssssesssnsesssssnsesssssssessssssnsess
40 ASSIGNABLE UNIT SEQUENCING WITHIN A COURSE
D1 STRUCTUREttsteertseessseessssessesesssssssssssessssssssssssssssssssssssssssssssessssessssessssassssassssssssssssessesessssassssasssssssesssessssessssesssssssesansns
4.2 SEQUENCING.....oumeriererseeessressesesssessssesssesnssssnnes
421 Course Element Status
422 Data Model Sequencing EIEMENtS........ccooeieirneeneeneeernereereeens
423 LOQiCal EXPIrESSIONS.....couuvirreerreerreerneieeneisesesessssessssses s s sesessens
4.3 COMPLETION REQUIREMENTS....ccurirteurereanereanesessessesessesesssssssssssssssessssssnses
431 Complex Completion ReqUiremMENtS..........cccocevveeeceeinenseseesessesenens
432 Completion Requirements - Rules of Execution............cccoeveeecvnnne.
4.4 PREREQUISITES . ..cciiiuriueeiueereeeesetsesstsesstsessssessssesssssssessssssssssssesssssssssssessssssnes
441 SMPIE Prer@QUISITES......cuvecceeereccie st ssss s ss e sessssesens
442 ComMpPIEX PrereqUISITES.......coccveceeieressstsesesse st ssssesessssesens
443 COMPIEX SEQUENCING. ..vvrereererirerirrerisesessssesesesssessesessssssssessssssesesssssessens
4.5 TRACKING NON-CONFORMING/NON-COMMUNICATING A SSIGNABLE UNITSIN A COURSEccouvverenrerennenenns 152
451 Web Environment Conformance REQUITEIMENTS..........cc.ceeereerirreerreersees s sssessssesaees 152
452 File-based Conformance REQUITEIMENTS..........cu e ssesessessssessssessessens 152
50 COMMUNICATING VIA FILES (THE FILE BINDING)....ccotrirttrineereeereeereerensenessesesstsesssssssssesssssssessssessens 153
5.1 CONCEPTUAL IMODEL....cttriuttreurtreastreastseasessssessssessssessssessssssssssssssssesassasssssssssssssssessssesesssssssssssssssssssssessssessssesnssssnssssans 153

August-16-2004 6 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

5.2 OPERATING ENVIRONMENTcoutvirerereresseseesessesseessssssessessesssssssssessesssssssssssessesssssssessessessessssssssssssssssssssssssessessesnnes
5.3 LAUNCHING AN ASSIGNABLE UNIT ..ottt sssesesesssssessssessesessesees
54 METHOD OF COMMUNICATION...c.cutueutreerresersesessesesstsesssssessssesssssssssssessssssssssssssssessssessssees

541 SArTUP FIlE (USAGE) . .euvreeceereerecieecieie ettt snaes

542 FiNiSh File (USAQE)curverreeerrieerrieeriiresiseseseisisese s ssssssssenas
543 Evaluation FileS (USAJE).......couerirerinieineee s ssssssssssssseens
544 Error CONQiTIONS........c.oiueerireieieereneie ettt bbb
5.5 CONFORMANCE REQUIREMENTS . ..ccctutturererersesessesesssseseessssessssessssessssssssssssssssssssssssssessssesnes
551 CMI RESPONSIDIITIES ..ottt naenes
55.2 Assignable Unit (AU) ReSpoNSiDilIti€S........cccceveveeerercssesses s
5.6 COMMUNICATION DATA MODEL MAPPING.....cocsturiierereereasentesesseesseessssesssessssessssessssesees
5.6.1 S L (0 o = RPN

5.6.2 FINISN Bl bt
5.6.3 L0 1010.01= 01 £ = PR
5.64 == Tox T LS =TT
5.6.5 Objectives Status File
5.6.6 L= UL = OO USRS
5.6.7 P TOIMANCE FIlE...... ettt bbb
6.0 COMMUNICATING VIAHTTP (THE HACP BINDING)oeiintirieireeereeeereieesisesisees e isesesseesesessessssensens
6.1 CONCEPTUAL IMODEL....cotuiuriueiueertesesseresstsesstsessssessssessssessessssesssstsssssssssssessssasssssssssassssssnssassssssssssssssssssssssssessssesnssncas
6.2 OPERATING ENVIRONMENT ...cturiuttriutriustreestsessssessesessesssessssess st st esss s ssssssssssssessseses
6.3 LAUNCHING AN A SSIGNABLE UNIT...ccurtuririurireinereesessesessesesssssesssssssssssss s ssesssssssssesssesees
6.3.1 The " LAUNCH URL ..ottt
6.4 METHOD OF COMMUNICATIONcutttueteeeressssessessssessesessssessssessssssssssesnssssssssssssssssssesssesees
6.4.1 HACP Transport MEChaNi SM..........cceurrrerrereeisiressssesesesssssesessssssssessssssssessssssssenees
6.4.2 HACP Request MeSSage FOIrmMAaLcocermreeeernrrerieereereeereesessereseseeeseesessessenenees
6.4.3 HACP Response Message FOrMALcccveerrreneeremreeereenessersssesessseesessessenesees
6.4.4 GEtPAramM REQUESL ...ttt
6.4.5 PULParam REQUESL............crirc s
6.4.6 OPLioNAl MESSAGES.......coiueriererierissieeerstie s s senaes
6.4.7 EXITAU MESSAJEcueeuirieirririeeissssssssssssss s ss s sssssssssssssssssssssssssssssssssnsnsssssasaen
6.4.8 Error CONQItIONS. ...ttt ettt
6.5 CONFORMANCE REQUIREMENTS....cuttutttutreusereasesessesesessesessssesssssesssesssssssssssssssssssssssseses
6.5.1 CMI RESPONSIDIITIES ..ottt naenes
6.5.2 Assignable Unit (AU) ResponSiDIlIti€S........ccceverireenenesersesse s
6.6 COMMUNICATION DATA MODEL MAPPING.....ccosuuriterereereaseniesenseesseessssesssessssessssessssesses
6.6.1 GELPAram (MESSAJES)eveererererirreeireresseeresessssssesessssssssesssssssessssssssesssssesssssssssssssssnses
6.6.2 PULPAram (MESSAQES)ucerererrererererrrrererensssssesesssssssessssssssessssssssesssssessessssssssssssssssseees
6.6.3 PULCOMMENES (MESSAGES)......cvreerreererieresteressisesessese s sese s ssssessssessssesssseeas
6.6.4 Putinteractions (MESSAJES)c.ceereererererreriesiese s ssssessseens
6.6.5 PULOD] ECLIVES (MESSAGES)......cvrevrriererirresieressisisssssse s s s sssssssseeas
6.6.6 PULPAIN (MESSAJES)cvuvurierrieerrierineisesees s
6.6.7 PUtPerformance (MESSAJES)ccouuiiereniienesieesesssessaes
6.6.8 EXITAU (MESSAQES).....cueeuererreeaciessessstetsssssssessssssssessssssssssessssssssessssssessssssssssesssnssssesssssetesssssssesssssssesasssssesens
7.0 COMMUNICATING VIA API (THE APl BINDING) ..ottt isess s sssssssessessssessens
7.1 CONCEPTUAL IMODEL....ccttuiurturetueeteeesseressesessssessssessssssssssssesssssssssssssssssssssessssssssssessssssssasssssesssssssssssssssssssessssessssessssseas
7.2 OPERATING ENVIRONMENT ...ottriuitriutrieetseeeesessssessesessesssessssess s st sssssssssssesssseses
7.3 LAUNCHING AN A SSIGNABLE UNIT....cccuiueiriueiierereeresenessesesssseesssseesssesssssssssessssessssesessesees
7.4 METHOD OF COMMUNICATION ...ctutreueteeresssessesessessssessssessssssssssssssssssssessssssssssssessesessesees
74.1 ParametersS.......cociiiieceee e
74.2 API General Rules
743 Arrays— Handling LiStS.......corrieereenisesesesines s sesessesessesnes
744 SESSION MELNOUS.... ..ottt
745 Data-Transfer MELNOUS.........coccrereeeie ettt bbbttt

August-16-2004 7 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

7.4.6 Error Handling MENOOS........ccvirerrreresesis st sss s sessss s s ssssssssnsnenssnsesnens
7.5 CONFORMANCE REQUIREMENTS....ccsuueurmeetrmerssnesesssessssessssessssssssssssssssssnsssssssssssssssssssssssnsees
751 CMI ReSPONSIDITITIES ...ttt
752 AU RESPONSIDITTIES......ooceeieeecreerecee s
7.6 COMMUNICATION DATA MODEL MAPPING.....cecssurerererserensereesesesesssesensssssssessssessssessssesnes

80 COURSE STRUCTURE DEFINITION (FILE BINDING) ...ovevenereeerieereeeenieeenenens

8.1 CONCEPTUAL MODEL............
8.2 COURSE INTERCHANGE.........
8.2.1 Course Structure Export
8.2.2 Course Structure Import
8.3 CONFORMANCE REQUIREMENTS ...cctuituriitreneeseseeseaessesssssesessisessisess s sssssssssssssssnsssesssesees
8.4 COURSE STRUCTURE DATA MODEL MAPPING.......costueuturertirensirensineessssssssessesssessssessssesees
84.1 Course DesCription (LCRS) File.....cverererrircis st sesssssesesssnens
842 DeSCriptor ((.DES) File.....cerrrcreretireeeie e
843 Assignable Unit (LAU) File.......oeresseessee e seeees
844 Course IFUCLUre ((CST) Fil€....cvcieeeeteei et
845 Objectives Relationships (LORT) File.......counnccneneseesresesseeneens
8.4.6 PrerequiSiteS ((PRE) Fil@......c.oiicee e
8.4.7 Completion Requirements (.CMP) Fil€......ccoccieicnnccnseessee s

9.0 DATA TYPES ..ottt bbb bbb

10.0 AUGMENTED BACKUS-NAUR FORM (BNF) NOTATION ...coiiriririeieeeineineisesseisessee e 231

10.1 AUGMENTED BACKUSNAUR FORM (BNF) CONSTRUCTS.....ccccerurirmretrenestessesesssssssssssssssssssssssssssssssesssssssssssnses 231
10.2 BASICBINF RULES ..ottt sttt bbbttt bbb bbbt bbb bbb bbb bbbt bbb bbb bbbttt

10.3 AICC STYLE INI RELATED BNF RULES
104 HACP RELATED BNF RULES
105 CSV RELATED BNF RULES.......ciiieirrecreirenicre e ssse s sssnessssnenesnes
106 “AICC XRIPT" BNF RULES

10.7 INTERACTIONSRELATED BNF RULES.....cciiiiririreeri st sssese st ssese s se e e se st sesessssssesssessesenssensssssessssssensnes
J1.0 GLOSSARY ..ottt bR a e 239
120 REFERENCES ..ot bbb 240

August-16-2004 8 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

1.0 Overview

1.1 Purpose

The purpose of this document isto define interfaces and rulesthat allow CBT (Computer-Based Training) content
from avariety of sourcesto interoperate with CMI (Computer Managed I nstruction) systems.

1.2 Scope

This document defines the following:
The mechanism used by the CM1 to launch CBT content
Common mechanisms and data for CMI/CBT communication
A common definition for organization and sequencing of CBT content in acourse.

Following items are outside the scope of this document:
User interface appearance
Pedagogy

August-16-2004 9 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

1.3 Document Organization

Document Section

Description

1.0 Overview

General Description and Overview

2.0 Communication Data M odel

Describes all data used for communication between
CBT assignable units and the CMI system. Eachdata
element is cross-referenced to all relevant bindings.

3.0 Course Structure Data M odel

A description of all data used to define a course
structure. Each data element is cross-referenced to all
relevant bindings

4.0 Assignable Unit Sequencing within a Course

A detailed explanation of how sequencing rulesin a
course are used.

5.0 Communicating via Files (The File Binding)

Defines the requirements for implementing the
communication data model using files.

6.0 Communicating via HTTP (The HACP Binding)

Defines the requirements for implementing the
communication data model using HT TP messages.

7.0 Communicating via APl (The API Binding)

Defines the requirements for implementing the
communication data model using a JavaScript API.

8.0 Course Structure Definition (File Binding)

Defines the requirements for implementing the course
structure data model using files.

9.0 DataTypes

Definition and format of datatypes used by the
various data models and their bindings.

10.0 Augmented Backus-Naur Form (BNF) Notation

The structured notation used to describe the
formatting of datatypesin this document

11.0 Glossary

Definition of terms used in this document.

12.0 References

List of external documents referenced.

August-16-2004 10

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

1.4 Conformance Requirements

This specification defines interoperability for the following environments:
File-based (Local file system and program execution.)
Web-based (Using aweb browser)

The conformance requirements for each environment are described in the following sections.

1.4.1 File-based Environments

A conforming CMI system in the file-based environment must meet all conformance requirements described in the
following sections:

5.0 Communicating via Files (The File Binding)

8.0 Course Structure Definition (File Binding)

A conforming Assignable Unit (AU) in the file-based environment must meet all conformance requirements
described in the following section:
5.0 Communicating via Files (The File Binding)

1.4.2 Web-based Environments

A conforming CMI system in the web-based environment must meet all of the conformance requirements described
in the following sections:

6.0 Communicating via HTTP (The HACP Binding)

7.0 Communicating via API (The API Binding)

8.0 Course Structure Definition (File Binding)

A conforming Assignable Unit (AU) in the web-based environment must meet all of the conformance requirements
described in either of the following sections:

6.0 Communicating via HTTP (The HACP Binding)

7.0 Communicating via APl (The API Binding)

August-16-2004 11 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.0 Communication Data Model

This section covers al that data that may be communicated between the CMI and the AU.
Each data element is this model may appear in one or more of the following bindings:

File-Based A text-filebinding for usein LAN/CD-ROM based systems. (See section 5.0.)

HACP An HTTP-based binding which may be used for Web implementations. (See section 6.0)

API A JavaScript API binding which may also be used for Web implementations. (See section
7.0)

In general, adata element is used in the same manner across all bindings, but there are some important distinctions
to be made for each binding:

1. Eachbinding has different rules for formatting data

2. Eachbinding also operatesin adifferent environment with different transport mechanisms.

3. Some data elements may be specific only to a particular binding.

The data elementsin this model are arranged hierarchically (in a*“parent/child” relationship). Hierarchy levelsare
delimited by period (*.”)sin the data element name. Any item to the right of the period delimiter isthe “child” of
preceding item (e.g. in “Core.Score” , “Core.Score” isachild of “Core” and “Core” isthe parent of “Core.Score”)

The table below list all elementsin this datamodel. Each element is described in the section indicated.

Table Legend:

Name Indicates the name of the data element.

Section Indicates wherein this document a definition of the data element is found.

CMI Obligation Thisindicates whether the data element is required or optional for aCMI

system.
CMI

Data Element Section | Obligation
Core 2.1 Mandatory
Core.Student Id 2.1.1 Mandatory
Core.Student Name 2.1.2 Mandatory
Core.Output File 2.1.3 Mandatory
Core.Lesson Location 2.14 Mandatory
Core.Credit 2.15 Mandatory
Core.Lesson Status 2.1.6 Mandatory
Core.Exit 2.1.7 Mandatory
Core.Entry 2.1.8 Mandatory
Core.File Path 2.1.9 Mandatory
Core.Score 2.1.10 Mandatory
Core.Session Time 2.1.11 Mandatory
Core.Total Time 2.1.12 Mandatory
Core.Lesson Mode 2.1.13 Optional
Suspend Data 2.2 Mandatory
Launch Data 2.3 Mandatory
Comments From Learner 2.4 Optional
Itemized Comments From Learner 2.5 Optional
Itemized Comments From Learner.Content 2.5.1 Optional
Iltemized Comments From Learner.Date 252 Optional
Itemized Comments From Learner.Location 25.4 Optional
Iltemized Comments From Learner.Time 2.5.5 Optional
Comments From LMS 2.6 Optional
Evaluation 2.7 Optional

August-16-2004 12 CMI001 Version 4.0

August-16-2004

AICC - CMI Guidelines for Interoperability

CMI
Data Element Section | Obligation
Evaluation.Comments_File 2.7.1 Optional
Evaluation.Course_Id 2.7.2 Optional
Evaluation.Interactions_File 2.7.3 Optional
Evaluation.Objective_Status_File 2.7.4 Optional
Evaluation.Path_File 2.75 Optional
Evaluation.Performance_File 2.7.6 Optional
Objectives 2.8 Optional
Objectives.ID 2.8.1 Optional
Objectives.Score 2.8.2 Optional
Objectives.Status 2.8.3 Optional
Objectives.Date 2.8.4 Optional
Objectives.Time 2.8.5 Optional
Objectives.Mastery Time 2.8.6 Optional
Student Data 2.9 Optional
Student Data.Attempt Number 2.9.1 Optional
Student Data.Tries 2.9.2 Optional
Student Data.Tries.Score 29.2.1 Optional
Student Data.Tries.Status 29.2.2 Optional
Student Data.Tries.Time 29.2.3 Optional
Student Data.Mastery Score 2.9.3 Optional
Student Data.Max Time Allowed 294 Optional
Student Data.Time Limit Action 2.9.5 Optional
Student Data.Tries During Lesson 2.9.6 Optional
Student Data.Sessions Journal 2.9.7 Optional
Student Data.Sessions Journal.Lesson Score 2.9.7.1 Optional
Student Data.Sessions Journal.Lesson Status 29.7.2 Optional
Student Preference 2.10 Optional
Student Preference.Audio 2.10.1 Optional
Student Preference.Language 2.10.2 Optional
Student Preference.Lesson Type 2.10.3 Optional
Student Preference.Speed 2.10.4 Optional
Student Preference.Text 2.10.5 Optional
Student Preference.Text Color 2.10.6 Optional
Student Preference.Text Location 2.10.7 Optional
Student Preference.Text Size 2.10.8 Optional
Student Preference.Video 2.10.9 Optional
Student Preference.Windows 2.10.10 Optional
Interactions 2.11 Optional
Interactions.|D 2.11.1 Optional
Interactions.Objectives 2.11.2 Optional
Interactions.Date 2.11.3 Optional
Interactions.Time 2.11.4 Optional
Interactions.Type 2.115 Optional
Interactions.Correct Responses 2.11.6 Optional
Interactions.Weighting 2.11.7 Optional
Interactions.Student Response 2.11.8 Optional
Interactions.Result 2.11.9 Optional
Interactions.Latency 2.11.10 Optional
Paths 2.12 Optional
Paths.Location Id 2.12.1 Optional
Paths.Date 2.12.2 Optional
Paths.Time 2.12.3 Optional
Paths.Status 2.12.4 Optional
Paths.Why Left 2.12.5 Optional
Paths.Time In Element 2.12.6 Optional
Student Demographics 2.13 Optional
Student Demographics.City 2.13.1 Optional
Student Demographics.Class 2.13.2 Optional
Student Demographics.Company 2.13.3 Optional
Student Demographics.Country 2.13.4 Optional
Student Demographics.Experience 2.13.5 Optional
Student Demographics.Familiar Name 2.13.6 Optional
Student Demographics.Instructor Name 2.13.7 Optional
Student Demographics.Native Language 2.13.8 Optional

13

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

CMI
Data Element Section | Obligation
Student Demographics.State 2.13.9 Optional
Student Demographics.Street Address 2.13.10 Optional
Student Demographics.Telephone 2.13.11 Optional
Student Demographics.Title 2.13.12 Optional
Student Demographics.Years Experience 2.13.13 Optional

Each element in this datamodel is described in tables in the following sections. The fields for each of these tables
areasfollows:

Data Element Name

The data elementsin this model are arranged hierarchically (in a*“parent/child” relationship). Hierarchy levelsare
delimited by period (“.”)sin the data element name. Any item to the right of the period delimiter isthe “child” of
preceding item (e.g. in “Core.Score” , “Core.Score” isachild of “Core” and “Core” is the parent of “Core.Score”).

Definition
A description of the data element.

Usage
What the data element is used for, and rules for its usage.

CMI Behavior Notes
A description of the expected or recommended CMI behavior when using the data element. (This field augments

“Usage’)

AU Behavior Notes
A description of the expected or recommended AU behavior when using the data element. (This field augments
“ U Sage!l)

File Binding: Name
Name used for the data element in the file binding.

File Binding: Filesand Obligations
The requirement for CMI or AU to read/write the data element in the files.

File Binding: Name Format
Formatting for the Name of the data element writtenin the files.

File Binding: Value Format
Thisfield adds additional explanation for valid values that afield may have (in addition to the definition that data
type provides).

File Binding: DataType

Each data element binding is assigned a“datatype’. The datatype defines the size of data element and the valid
ranges of values. See section 10. Data Types

File Binding: Examples
Examples of how data element is represented in files.

HACP Binding: Name
Name used for the data element in the HACP binding.

August-16-2004 14 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

HACP Binding: HACP M essage(s) and Obligations
The requirement for CMI or AU to read/write the data element in the HA CP messages specified.

HACP Binding: Name Format
Formatting for the name of the data element included in the HACP messages.

HACP Binding: Value Format
Thisfield adds additional explanation for valid values that afield may have (in addition to the definition that data
type provides).

HACP Binding: Datatype
Each data element binding is assigned a“ data type” . The datatype defines the size of data element and the valid
ranges of values. See section 10. Data Types

HACP Binding: Examples
Examples of how the data element is represented in HA CP messages.

API Binding: Name
Name used for the data element in the API binding.

API Binding: API’sand Obligations
The requirement for CMI or AU to read/write the data element using the API.

API Binding: Name For mat
Formatting for the name of the data element when using the API

API Binding: Value Format
Thisfield adds additional explanation for valid values that afield may have (in addition to the definition that data
type provides).

API Binding: Data type
Each data element binding is assigned a“ datatype”. The data type definesthe size of data element and the valid
ranges of values. See section 10. Data Types

API Binding: Examples
Examples of how the data element is represented in API calls.

August-16-2004 15 CMI001 Version 4.0

2.1 Core

AICC - CMI Guidelines for Interoperability

Data Element Name

Core

Definition

A grouping for a variety of important data elements.

Usage

Most data elements in this category are required to be furnished
by all CMI systems. Mandatory members of this group are what
all AU’s may depend upon at start up. Individual members of
group are not necessarily all mandatory. (See individual member
data elements for obligations)

Membership

Core.Student ID
Core.Student Name
Core.Output File
Core.Lesson Location
Core.Credit
Core.Lesson Status
Core.Exit
Core.Entry
Core.File Path
Core.Score
Core.Session Time
Core.Total Time
Core.Lesson Mode

2.1.1 Core.Student ID

Data Element Name

Core.Student ID

Definition

Unique alpha-numeric code/identifier that refers to a single user of the CMI
system.

Usage

Used to uniquely identify a student. The AU obtains this element on startup
in order to associate Core.Student ID with other optional data elements (in
the file and HACP bindings). The AU may also use Core.Student ID for
display purposes in all bindings.

CMI Behavior Notes

This element may be associated with the CMI system’s login name for a
given student. (But is not required to be equivalent)

AU Behavior Notes

File Binding

Name

Student_ID

Files & Obligations

Startup: CMI Mandatory

Comments: If file exists, AU Mandatory
Interactions: If file exists, AU Mandatory
Objectives Status: If file exists, AU Mandatory
Path: If file exists, AU Mandatory

Name Format

“Student_ID” Case insensitive.

Value Format

See description of data type CMIldentifierINI

Data type CMlldentifierINI
Examples Student_ID=Ted Rooseveltl
Student_id = JQH-1959
STUDENT _id =jack1991-3
HACP Binding
Name Student_ID

August-16-2004

16 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Student ID

HACP Message(s)
& Obligations

GetParam(response) : CMI Mandatory
PutComments: Optional
Putinteractions: Optional
PutObjectives Status: Optional
PutPath: Optional

Name Format

Same as File binding

Value Format

Same as File binding

Data type Same as File binding

Examples Same as File binding
API Binding

Name cmi.core.student id

APl & Obligations

LMSGetValue(): CMI Mandatory

Name Format

“cmi.core.student_id” Case sensitive.

Value Format

Alphanumeric group of characters with no white space or unprintable
characters in it. Maximum of 255 characters.

Data type CMlldentifierINI
Examples | Stu_id = LMSGetValue(“cmi.core.student id”)
2.1.2 Core.Student Name

Data Element Name

Core.Student Name

Definition

Normally, the official name used for the student on the course roster. A
complete name, not just a first name.

Usage

Used to represent the student’s official name

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

Student Name

Files & Obligations

Startup : Mandatory

Name Format

“Student_ Name” case insensitive

Value Format

See DataType CMIStudentName for detailed formatting rules.

Data type CMIStudentName
Examples STUDENT_NAME = Blough, Joseph
studeNT nAME = Brown ,
student_name = Smith-Farley von Sant, Johann A
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam(response) : Mandatory
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name cmi.core.student name

API & Obligations

LMSGetValue() : Mandatory

Name Format

“cmi.core.student_name” case sensitive

August-16-2004

17 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Value Format

Same as File Binding

Data type Same as File Binding
Examples | var StudentName = LMSGetValue(“cmi.core.student_name”);
2.1.3 Core.Output File

Data Element Name

Core.Output File

Definition

A fully qualified file path for the Finish file, which the AU must construct if it
is to pass information back to the CMI system.

Usage AU writes output data (i.e. the Output_File) to location specified in this
element (used for the File binding only).
CMI Behavior CMI determines the location for Finish file
AU Behavior AU writes the Finish file at this location prior to session termination.
File Binding
Name Output_File

Files & Obligations

Startup : CMI Mandatory

Name Format

“Output_file” case insensitive

Value Format

See description for the CMIFileNameFull data type

Data type CMIFileNameFull
Examples Output file = C:\windows\outparam.cmi
OUTPUT FILE =BB:\r
OUTPUT _FILE = C:\ directory with spaces\file with spaces.txt
HACP Binding
Name Not Applicable
HACP Message(s) Not Applicable
& Obligations

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable

Examples | Not Applicable
API Binding

Name Not Applicable

APl & Obligations

Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable
Examples | Not Applicable
2.1.4 Core.Lesson Location

Data Element Name

Core.Lesson Location

Definition

This corresponds to the AU exit point passed to the CMI system the last
time the student experienced the AU. This element provides a mechanism
to let the student return to an AU at the same place he/she left it earlier.
This element can identify the student's exit point and that exit point can be
used by the AU as an entry point the next time the student runs the AU.

Usage

The element could be used by the AU to store resume information for a
session. If the AU is exited, and then is re-entered later, this element
could be used by the AU to send the student back into the AU where they
left off.

August-16-2004

18 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Lesson Location

This element is only set by the AU. The CMI must always return the value
provided from the previous AU session. The first time a student enters the

AU, the value of Core.Lesson Location is an empty string ().

CMI Behavior Notes

The CMI must set aside a space for this element for each AU in the
course(s) for each student. It stores this data and returns it to the AU

when it is run again. The CMI shall retain this data as long as the student

is enrolled in (or has access to) the course

CMI must always return the value previously stored by the AU in this
element (in the last AU session).

The CMI is not required to report on this data element.

AU Behavior Notes

The AU is not required to read/use this element

File Binding

Name

Lesson_Location

Files & Obligations

Startup: CMI Mandatory
Finish: CMI Mandatory

Name Format

“Lesson_Location” case insensitive

Value Format

Implementation dependent. Carriage returns, and line feeds are not
allowed. See datatype CMIString255INI.

Data type CMIString255INI

Examples Lesson Location=1,,,,,2
Lesson_Location = Page 1
Lesson_Location = #$#&"%&"*$Q#)*%afgfg

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam(Response) : CMI Mandatory

& Obligations PutParam : CMI Mandatory

Name Format

Same as File Binding

Value Format

Implementation dependent. Carriage returns, and line feeds are not
allowed. See datatype CMIString255INI

Data type CMIString255INI

Examples | Same as File Binding
API Binding

Name cmi.core.lesson_location

API & Obligations

LMSGetValue() : CMI Mandatory
LMSSetValue() : CMI Mandatory

Name Format

“cmi.core.lesson_location” case sensitive

Value Format

Implementation dependent. Carriage returns, and line feeds are not
allowed. See datatype CMIString255INI

Data type

CMIString255INI

Examples

var AULocation = LMSGetValue(“cmi.core.lesson_location”);

2.1.5 Core.Credit

| Data Element Name

Core.Credit

August-16-2004

19 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Credit

Definition

Indicates whether the student is being credited by the CMI system for his
performance (pass/fail and score) in this AU.

Usage

Used by the CMI system to indicate to the AU whether the student is
being given credit for his or her score and status in the usage of the
content. There are two possible arguments for this keyword, Credit or
No-credit.

Credit. The student is taking the AU “for credit”. The CMIsystem is
telling the AU that if the AU sends data to the CMI system, the CMI
system will credit it to the student. (i.e. record status and score related
changes normally)

No-credit. The student is not taking the AU “for credit”. The current
credit will not be changed by the student’s performance in this AU
session. With this value the CMI system is communicating to the AU
that if the AU sends data to the CMI system, it will not change the
student’s accreditation. (i.e. will NOT record status and score related
changes). When a CMI sets the value of this data element to “No-
credit” at AU launch, certain elements are not updated with AU
session data. These elements are as follows:

Core.Score

Objectives.Score

Objectives.Status

All other data elements (with the exception of Core.Lesson Status) are
normally updated with AU’s session data when Core.Credit is set to
“No Credit”.

When Core.Credit is set to “No Credit, Core.Lesson Status can only
be changed from a value of “Not Attempted” to “Browsed”, otherwise
Core.Lesson Status is not updated (as a result of “No Credit” AU
session).

When Core.Lesson_Mode is set to “Browsed”, Core.Credit must be set to
“No Credit”. (See Core.Lesson_Mode.)

CMI Behavior

CMI determines whether an AU is to be taken “for Credit”. Usually via a
student’s user interface selection.

AU Behavior

If an unrecognized or unanticipated CREDIT value is received, then
Credit is assumed by the AU.

File Binding

Name

Credit

Files & Obligations

Startup: CMI Mandatory

Name Format

“credit” Case insensitive.

Value Format

One of two words: “credit” or “no-credit”. Case insensitive. Only the first
character is significant.

Data type CMIVocabularyINI:Credit
Examples Credit=c
Credit = credit
credit =N
HACP Binding
Name Credit
HACP Message(s) GetParam (response): CMI Mandatory
& Obligations

August-16-2004

20 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Credit

Name Format

Same as file binding.

Value Format

Same as file binding.

Data type Same as file binding.

Examples | Same as file binding.
API Binding

Name cmi.core.credit

API & Obligations

LMSGetValue():CMI Mandatory

Name Format

“cmi.core.credit” Case sensitive.

Value Format

“credit” or “no-credit” Case sensitive. All characters must be present.

Data type CMIVocabulary:Credit

Examples grading = LMSGetValue(“cmi.core.credit”)
var creditFlag = LMSGetValue(“cmi.core.credit”)
if (creditFlag == “credit”
{
/I Student is taking course for credit. Handle appropriately.
}
else
/I Student is taking course for no credit. Handle appropriately.
}

2.1.6 Core.Lesson Status

Data Element Name

Core.Lesson Status

Definition

The current student status for a given AU. The CMI system determines
this status based on data returned from the AU and other factors. Six
status values are possible:
passed: A necessary number of objectives in the AU were mastered
by the student, and/or the necessary score was achieved. Student is
considered to have “completed” the AU and “passed”.
completed: The AU may or may not be “passed”, but all the elements
in the AU were experienced by the student. The student is
considered to have completed the AU. For instance, “passing” may
depend on a certain minimum score known to the CMI system.
failed: The AU was not passed. The student experienced some kind
of assessment within the AU but did not demonstrate mastery of the
AU’s instruction material. The student has viewed some (or all) of the
AU’s instructional material.
incomplete: The AU was started but not finished. The student did not
view all the required elements in the AU.
browsed: The student launched the AU with a CMI mode of Browse.
not attempted: Incomplete implies that the student made an attempt
to perform the AU, but for some reason was unable to finish it. Not
attempted means that the student did not even begin the AU. Maybe
he just read the table of contents, or AU abstract and decided he was
not ready. Any algorithm within the AU may be used to determine
when the AU moves from "not attempted"” to "incomplete"”.

Usage

The CMl initializes Core.Lesson Status to “not attempted”.

Except for course structures with complex logic statements, a
Core.Lesson Status value of “passed” or “completed” is treated the same
for course prerequisites and completion requirements.

August-16-2004

21 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Lesson Status

Normally, the AU determines Core.Lesson Status and passes it to the
CMI. On re-entry into the AU, the CMI passes the previous status
returned by the AU. However, the CMI can change the status based on
the following rules:

1) |If Core.Credit is set to “credit” and there is a value for Student
Data.Mastery Score and the AU returns a value for
Core.Score.Raw, the CMI can change the status to either passed or
failed depending on whether the student's score meets/exceeds
Student Data.Mastery Score. If there is no value returned by the AU
session for Core.Score.Raw, the CMI does not change the status
using this rule.

2) If the AU is part of a course that has completion requirements in its
course structure, then the CMI can change the status depending on
the completion requirements rules defined (see Course
Elements.Completions.Requirement).

3) If there is no value for Student Data.Mastery Score passed to AU
and there are no completion requirements rules defined (in the
course structure), then the CMI cannot override an AU determined
status.

4) If the CMI sets Core.Credit to “no-credit” for the AU session, the CMI
is not allowed to change/update Core.Lesson Status unless the
initial value of Core.Lesson Status was “not attempted”. In this
particular case, Core.Lesson Status is changed to “browsed”. (See
Core.Credit)

5) The CMI cannot change a previously (CMI) recorded Core.Lesson
Status to “not attempted” in the course of normal operation.

CMI Behavior The CMIl is responsible for setting the initial value of Core.Lesson Status
to "not attempted”. The CMI may further “preset” the value of
Core.Lesson Status (prior to the first student launch) based the
completion requirements rules (see Course
Elements.Completions.Requirement).
Manual manipulation of Core.Lesson.Status by administrative users is
outside the scope of this specification.

AU Behavior In File & HACP binding’s the AU is required to report status. With the API
binding, the AU is not required to report status.

File Binding

Name Lesson_Status

Files & Obligations

Startup: CMI Mandatory
Finish: AU Mandatory

Name Format

“Lesson_Status” case insensitive

Value Format

One of the following vocabulary values: “passed” , “failed”, “complete”,

“incomplete”, “not attempted”, or “browsed”. All values are case
insensitive. Only the first character is significant.

Data type CMIVocabularyINI:Status
Examples lesson_status = Passed
LESSON_STATUS =c¢
LessoN_Status = F
HACP Binding
Name Same as File Binding

August-16-2004

2 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Lesson Status

HACP Message(s)
& Obligations

GetParam(response) : CMI Mandatory
PutParam : AU Mandatory

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples Same as File Binding
API Binding

Name cmi.core.lesson_status

API & Obligations

LMSGetValue() : CMI Mandatory
LMSSetValue() : CMI Mandatory

Name Format

“cmi.core.lesson_status” case sensitive

Value Format

A specific vocabulary limited to one of the following values: “passed”,
“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”. All

values are case sensitive

Data type CMIVocabulary:Status
Examples var X = LMSGetValue(“cmi.core.lesson_status”)
LMSSetValue(“cmi.core.lesson_status”, “passed”)
2.1.7 Core.Exit

Data Element Name

Core.Exit

Definition

An indication of how or why the student left the AU.

Usage

This element can only be set by the AU. There are four possible values:
"time-out": This indicates the AU ended because the AU has
determined an excessive amount of time has elapsed with no student
interaction, or the “max_time_allowed” has been exceeded.
"suspend": This indicates the student leaves the AU with the intent
of returning to it later at the point where he/she left.

"logout”: This indicates that the student logged out from within the
AU instead of returning to the CMI system to log out. The AU passed
control to the CMI system, and the CMI system automatically logged
the student out of the course -- after updating the appropriate data
model elements. CMI would then require the student to re-
authenticate (login) prior to viewing any other material in the course.
Empty string — an empty string (“") or no value given indicates a
normal exit state.

CMI Behavior Notes

The CMI does not initialize this element.

“logout” behavior: If the CMI receives a logout value from an AU it must
logout the student (after the AU session terminates). The student would
then be required to re-authenticate (login) prior to viewing other material
in the course.

“time-out” behavior: The CMI may provide a visual cue to the student
indicating that the reporting AU was terminated due to a time-out. The
CMI may also exhibit logout behavior in addition to this visual cue.

“suspend” behavior: The CMI may provide a visual cue indicating that
the student exited with AU with the intent of returning to it later. The CMI
must set Core.Entry to “resume” on the next launch of this AU.

August-16-2004

23 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Exit

AU Behavior Notes

“logout” behavior: The AU should provide a visual cue to the student as
to which action will cause a logout value to be reported to the CMI.

File Binding

Name

AU Lesson_Status Flag

Files & Obligation

Finish : CMI Mandatory

Name Format

Not Applicable. It is an appended to the Lesson_Status keyword/value
pair.

Value Format

This element is appended to the keyword/value pair of Lesson_Status
with “,” (comma) preceding it. There may be spaces trailing and leading
this comma. The element value is case-insensitive with only the first
character being significant. If the element is not present, a normal exit
shall be assumed.

Data type CMIVocabularyINI:Exit

Examples LESSON_ Status = Passed, Logout
Lesson_Status = Complete, t
LESSON_Status =1, S

HACP Binding

Name Same as File Binding

HACP Message(s) PutParam : CMI Mandatory

& Obligation

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name cmi.core.exit

API & Obligation

LMSSetvalue() : CMI Mandatory

Name Format

“cmi.core.exit” — case sensitive

Value Format

The value must be one of the following: “time-out”, “logout”, “suspend”
or the empty string (*").

Data type CMIVocabulary:Exit
Examples | LMSSetValue("cmi.core.exit","time-out")
2.1.8 Core.Entry

Data Element Name

Core.Entry

Definition

Indication of whether the student has entered the AU before.

Usage

This element is set by the CMI and is only readable by the AU. Three
possible values for Core.Entry :
"ab-initio": This indicates it is the first time the student is entering the
AU. Because the student may have passed all of the objectives in a
AU by completing a pre-test, the lesson_status of not attempted is not
a reliable indicator. That is, an AU may be passed without the
student having ever seen it.
"resume": This indicates that the student was in the AU earlier. The
student is resuming a suspended AU. Core.Entry is only set to this
value if Core.EXxit was set to “suspend” in the previous AU session.
"": The empty string should be used to represent an entry into the AU
that is neither an initial (ab-initio) nor a continuation from a suspended

August-16-2004

24 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Entry

state (resume). A scenario that might be used is if the AU was
already completed and then later it was loaded for review purposes.
In this case it was neither an initial launch (ab-initio) nor a
continuation from a suspended state (resume).

When a student enters the AU for the first time the Core.Entry element
must be set to “ab-initio” by the CMI. If the student re-enters an AU that
previously exited with a value of “suspend”, then the entry flag must be
set to “resume” by the CMI.

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

CMI Lesson_Status Flag

Files & Obligations

Startup: CMI mandatory

Name Format

Not Applicable. It is an appended to another keyword/value pair

Value Format

This element is appended to the keyword/value pair of Lesson_Status
with “,” (comma) preceding it. There may be spaces trailing and leading
this comma. The element value is case-insensitive with only the first
character being significant. This element is not present if the value is
empty string.

Data type CMIVocabularyINI:Entry

Examples LESSON_STATUS =NA A
lesson_status = p, a
lesson_status =f, r

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response) : CMI Mandatory

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name cmi.core.entry

APl & Obligations

LMSGetValue() : CMI mandatory

Name Format

Value Format

“cmi.core.entry” case sensitive
One of the following values: “ab-initio”, “
values are case sensitive.

resume” , or empty string (). All

Data type CMIVocabulary:Entry
Examples | var entry val = LMSGetValue("cmi.core.entry")
2.1.9 Core.File Path

Data Element Name

Core.File Path

Definition

This element indicates to the AU where additional (AU-specific) data files
may be written by the AU. The directory path indicated by this element is
unigue to an individual student for a given AU in a given course.

Usage

A (logically or explicitly) unique directory location must be maintained by
the CMI for an individual student data for a given AU in a given course.

August-16-2004

25 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.File Path

The path to this location must be provided to the AU at launch time.

CMI Behavior Notes

CMI Implementations of this element will vary widely depending
distribution of writable local drive volumes, (network) shared drive
volumes, and storage management features.

CMI implementations may require the student to use a specific
workstation or specific shared network volumes to support this element.

AU Behavior Notes

File Binding

Name

Path

Files & Obligations

Startup : CMI Mandatory

Name Format

“Path” — case insensitive

Value Format

Fully qualified Windows directory path specification with drive letter(s),
directory path.

<Drive Letter>:\<directories>\

Embedded spaces in directory names are allowed. Non printable
charactersand <> ? *” /[\ . are not allowed in directory names.

Directory names are separated by \'s (back slashes). Leading and trailing

spaces are not allowed around the back slashes.

Data type CMIDirectoryNameFull
Examples Path=X:\CMI student data\course 101\joe student\
Path = D:\USERDATA\CRS123\USER123\
HACP Binding
Name Not Applicable
HACP Message(s) & Not Applicable
Obligations

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable

Examples | Not Applicable
API Binding

Name Not Applicable

APl & Obligations

Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type

Not Applicable

Examples

| Not Applicable

2.1.10 Core.Score

| Data Element Name

Core.Score

August-16-2004

26 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Score

Definition

This data element indicates the performance of the student during his last
session in the assignable unit. It may have up to three sub-elements:
Core.Score.Raw, Core.Score.Max, and Core.Score.Min.

Score.Raw

This may be an unprocessed or processed indicator of how the student

performed with the interactions he experienced.

Score.Max

This is the largest score the student could have achieved with the

interactions that he experienced.

Score.Min

This is the smallest score that the student could have achieved with the

interactions he/she experienced.

Usage

If Score.Raw is not accompanied by Score.Max or Score.Min, it may be
determined and calculated in any manner that makes sense to the
program designer. For instance, it could reflect the percentage of
objectives complete, it could be the raw score on a multiple choice test, or
it could indicate the number of correct first responses to the embedded
questions in the AU.

If the value return by the AU session for Score.Raw is empty string (*") ,
then the student is considered to have not vsited the scored portion of the
content.

If Score.Raw is accompanied by Score.Max or Score.Min, it reflects the
performance of the learner relative to the max and min values.

If Score.Max accompanies Score.Raw with no Score.Min, Score.Min is
assumed to be “0”".

If Score.Min is included then Score.Max must be also be included.

The value of each of the score sub-elements (in relation to one another)
must be as follows:
Score.Max >= Score.Raw >= Score.Min

The AU is responsible for setting this element and the CMI is responsible
for providing the previous AU session value for this element given the
rules:

CMI must initialize this element to an empty string ("
initial launch of an AU.
On subsequent launches of an AU, The CMI must provide the
value recorded by the AU in the last session in which
Core.Credit had a value of “credit.
If the AU sets this value multiple times in a session, only the
final value is recorded by the CMI (When Core.Credit has a
value of “credit”)

) upon

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

Score

August-16-2004

27 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Score

In Files &
Obligations

Startup, Finish:
Core.Score.Raw:
Core.Score.Max:

CMI Mandatory. AU Mandatory
If Core.Score.Min exists, then CMI and AU
Mandatory, otherwise optional.

Core.Score.Min: CMI and AU Optional

Name Format

“Score” Case insensitive.

Value Format

Empty string or comma separated list of numeric scores. See description
for data type CMIScorelNI

Data type CMIScorelNI
Examples SCORE=79
SCORE= 0.654
Score = 8,10,0
; Raw score of 8 with a maximum possible of 10 and minimum of 0.
score=1.3, 2
; Raw score of 1.3 with a maximum of 2. Min is assumed to be 0.
Score=
; Either the student's first entry or he did not attempt
; any scored interactions in his earlier use of the AU.
HACP Binding
Name Score
HTTP Messages & GetParam, PutParam:
Obligations Core.Score.Raw: CMI Mandatory, AU Mandatory

Core.Score.Max: If Core.Score.Min exists, then CMI Mandatory and

AU Mandatory, otherwise optional.

Core.Score.Min: Optional (CMI and AU)

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples Same as File Binding
API Binding

Name cmi.core.score

API & Obligations

LMSGetValue() and LMSSetValue() :
Core.Score.Raw: CMI Mandatory
Core.Score.Max: CMI Mandatory. If Core.Score.Min exists AU
mandatory, otherwise AU optional.
Core.Score.Min: CMI Mandatory, AU Optional

Name Format

TT] ” oo

“cmi.core.score.raw”, “cmi.core.score.max”, “cmi.core.score.min” Case
sensitive.

Value Format

w“n

Single decimal number or empty string “” (for each sub element).

Data type

CMIDecimal (for each sub-element)

Examples

LessonScore = LMSGetValue(“cmi.core.score.raw”)

LessonRaw = LMSGetValue(“cmi.core.score.raw”)
LessonMax = LMSGetValue(“cmi.core.score.max”)
LessonMin = LMSGetValue(“cmi.core.score.min”)

Success_state = LMSSetValue(“cmi.core.score.raw” , “.83")

August-16-2004

28 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.1.11 Core.Session Time

Data Element Name

Core.Session Time

Definition

The amount of time in hours, minutes, and seconds that the student has
spent in the AU at the time they leave it. This represents the time from
beginning of the session to the end of a single use of the AU.

Usage

Used to keep track of the time spent in an AU for a session. Only the
AU sets this element.

CMI Behavior Note

If the AU does not report a value for Core.Session Time (or reports an
empty string), then the CMI may use its own internal time tracking
mechanism to determine Core.Session Time (and add to Core.Total
Time).

The CMI will use the values reported via this element to calculate the
Core.Total Time (which is a total of all Core.Session Time values
reported by a given AU for a given student)

AU Behavior Note

During an AU session, the AU may record Core.Session Time multiple
times. Should this occur, only the final instance will be recorded for the
AU session and added to Core.Total Time.

File Binding

Name

AU Time

Files & Obligations

Finish: AU Mandatory

Name Format

“Time” — case insensitive

Value Format

See Datatype CMITimespan

Data type CMITimespan
Examples Time = 02:34:05
TIME = 1002:34:05
Time = 00:12:23.3
HACP Binding
Name Same as File Binding
HACP Message(s) PutParam : AU Mandatory
& Obligations PutParam : CMI Mandatory

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples | Same as File Binding
API Binding
Name cmi.core.session_time
Supported API LMSSetValue()
Obligation LMSSetValue() : CMI Mandatory

Name Format

“cmi.core.session_time” — case sensitive

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

LMSSetValue("cmi.core.session_time","0000:12:30")

LMSSetValue("cmi.core.session_time","03:11:23.45")

LMSSetValue("cmi.core.session_time","00:18:29")

August-16-2004

29 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.1.12 Core.Total Time

Data Element Name

Core.Total Time

Definition

Accumulated time of all the student sessions of the AU in a given
course.

Usage

Used to keep track of the total time spent in every session of a given
AU for a given student (enrolled in a given course).

CMI Behavior Notes

CMI must initialize the Core.Total Time to a (valid time) value of zero
the first time the AU is launched and then use the Core.Session Time
values reported by the AU (for each session) to keep a running total.

AU Behavior Notes

File Binding

Name

Time

Files & Obligations

Startup : CMI Mandatory

Name Format

“Time” — case insensitive

Value Format

See Datatype

Data type CMITimespan
Examples Time = 1002:34:05
TIME = 02:34:05
Time = 019:12:23.3
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response) : CMI Mandatory
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name cmi.core.total _time

API & Obligations

LMSGetValue() : CMI Mandatory

Name Format

“cmi.core.total_time” — case sensitive

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

| var x = LMSGetValue(“cmi.core.total time”)

2.1.13 Core.Lesson Mode

Data Element Name

Core.Lesson Mode

Definition

Identifies the AU behavior desired after launch. Many AU’s have a
single “behavior”. Some AU’s, however, can present different amounts
of information, or present information in different sequences, or present
information reflecting different training philosophies based on an
instructor’s or designer’s decisions. Designers may enable AU’s to
behave in a virtually unlimited number of ways. This element supports
the communication of three parameters that may result in different AU
behaviors.

Usage

This element is set by the CMI. There are three possible values:
"browse": The student wants to preview the materials, but not
necessarily challenge the AU for an assessment, grade, or
evaluation of any kind. The CMI must set Core.Credit to “no-credit”

August-16-2004

30 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Core.Lesson Mode

if a mode of “browse” is used. Also if “browse” mode is used and
the current status is “not attempted”, the Core.Lesson Status will
set to “browsed” by the CMI regardless of what status the AU
provides.

"normal”: This indicates that the AU should behave as designed
for a student wanting to get credit for his learning.

"review": The student has already seen the material at least once
and been graded. The CMI must set Core.Credit to “no-credit” if a
mode of “review” is used

If an unrecognized or unanticipated Core.Lesson Mode is received,
then the mode the AU designer considers normal is assumed by the
AU. (“normal” mode is the default)

CMI Behavior Notes

If Core.Lesson Mode is supported in the CMI, the CMI should have a
user interface that allows to the student user the ability to select the
mode that the AU will be launched with.

AU Behavior Notes

If an AU supports Core.Lesson Mode, the AU must return a
Core.Lesson Status of “browsed” if launched in “browse” mode.

File Binding

Name

Lesson Mode

Files & Obligations

Startup : CMI Optional
Startup : AU optional

Name Format

Value Format

“Lesson_Mode” — case insensitive
One of the following values: “browse” , “normal”, “review”. All values are
case insensitive. Only the first character is significant.

Data type CMIVocabularyINI:Mode

Examples Lesson_mode = Normal
Lesson MODE =r
LESSON_MODE = browse

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response) : CMI optional

& Obligations GetParam (response) : AU optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name cmi.core.lesson_mode

APl & Obligations

LMSGetValue() : CMI Optional

Name Format

“cmi.core.lesson_mode” — case sensitive

Value Format

One of the following values: “browse” , “normal”, “review”. All values are
case sensitive.

Data type

CMIVocabulary:Mode

Examples

| var x = LMSGetValue(“cmi.core.lesson mode”)

2.2 Suspend Data

| Data Element Name

Suspend Data

August-16-2004

31 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Suspend Data

Definition

Unique information generated by the AU during previous sessions for a
given student that is needed for the current AU session. This data is
created by the AU and stored by the CMI to pass back to the AU the
next time the AU is run. This element typically used by the AU to
retrieve previous state information from the last session (i.e. “restart” or
“book-marking” information).

Usage

An AU can set this value at any anytime prior to AU session exit. The
AU then could use this information in the next session for that AU.

CMI Behavior Notes

The CMI must set aside a space for this element for each AU in the
course(s) for each student. It stores this data and returns it to the AU
when it is run again. The CMI shall retain this data as long as the
student is enrolled in (or has access to) the course.

The CMI is not required to report on this data element.

AU Behavior Notes

File Binding

Name

Core Lesson

Files & Obligations

Finish: CMI Mandatory, AU optional
Startup: CMI Mandatory, AU optional

Name Format

“[Core_Lesson]” case insensitive

Value Format

A string of up to 4096 characters in length located in the
“[Core_Lesson]” group. The string format is free-form with the following
restrictions:

Square brackets “[]” are not allowed.

Leading and trailing whitespace (carriage-returns, tabs, spaces)

are not included.

Embedded whitespace is allowed and must be included

(See Data Type CMIString4096INI for more detail)

Data type

CMIString4096INI

Examples

; In this exanple the value for
; Core_Lesson starts with “9” and ends with

[T]

z".
[CORE_I| esson]
9 00 001010101100110

000 001010101100110
000001010101100110

rt gagf hdf hj khj khj k
gl ' ;sdfgl’;sdfhgl’;sdfhgls’;df
z

[Core_Vendor]

August-16-2004

; This exanpl e shows how keyword/val ue pairs could
; be used in CORE_Lesson.

[CORE_Lesson]

32 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Suspend Data

1BookMar k = Sone book nark data
2BookMar k = Sone nore book mark data
1StateData = Sone state data
2StateData = Sone npre state data.

HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (Response): CMI Mandatory, AU optional
& Obligations PutParam: CMI Mandatory, AU optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name cmi.suspend_data

API & Obligations

LMSGetvalue(): CMI Mandatory, AU optional
LMSSetvalue(): CMI Mandatory, AU optional

Name Format

“cmi.suspend_data” — case sensitive

Value Format

A 4096 character string. The string format is free-form with the
following restrictions:
- Square brackets “[]” are not allowed.
Leading and trailing whitespace (carriage-returns, tabs, spaces)
are not included.
Embedded whitespace is allowed and must be included

(See Data Type CMIString4096INI for more detail)

Data type

CMIString4096INI

Examples

2.3 Launch Data

Data Element Name

Launch Data

Definition

Unique information specific to an AU that is needed for every use.
Without this information, an AU may not execute.

Usage

The data contained in this element is static and will always be the same
for a given AU in a given course.

CMI Behavior Notes

A CMI system must allow for administrative users to add Launch data
for AU’s through course structure import. In addition, a CMI system
should also allow a user interface for administrative users to directly
enter Launch data information for a given AU.

AU Behavior Notes

File Binding

Name

Core_Vendor

Files & Obligations

Startup: CMI Mandatory, AU Optional

Name Format

“[Core_Vendor]” — case insensitive

Value Format

A string of up to 4096 characters in length located in the

August-16-2004

33 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Launch Data

“[Core_Vendor]” group. The string format is free-form with the following
restrictions:
- Square brackets “[]” are not allowed.
Leading and trailing whitespace (carriage-returns, tabs, spaces)
are not included.
Embedded whitespace is allowed and must be included

(See Data Type CMIString4096INI for more detail)

Data type CMIString4096INI
Examples ; In this exanple the value for
; Core_Vendor starts with “L” and ends with “8".
; The second “[core_vendor]” is ignored.
[CORE_Vendor]
Launch stuff
00110
rt gagf hdf hj khj khj k
gl ' ;sdfgl’;sdfhgl’;sdfhgls’;df
8
[Core_Lesson]
; This exanpl e shows how keyword/val ue pairs could
; be used in CORE_VENDOR.
[CORE_Vendor]
LaunchParanl = Sone | aunch stuff
LaunchParan? = Sonme nmore | aunch stuff
LaunchParanB = Sone | aunch stuff
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (Response): CMI Mandatory, AU optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name cmi.launch_data

APl & Obligations

LMSGetvalue() : CMI Mandatory, AU Optional

Name Format

“cmi. launch_data” — case sensitive

Value Format

A 4096 character string. The string format is free-form with the
following restrictions:
- Square brackets “[]” are not allowed.
Leading and trailing whitespace (carriage-returns, tabs, spaces)
are not included.
Embedded whitespace is allowed and must be included

August-16-2004

34 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Launch Data

(See Data Type CMIString4096I NI for more detail)

Data type

CMIString4096INI

Examples

2.4 Comments From Learner

Data Element Name

Comments From Learner

Definition

This data element contains freeform textual feedback (comments) from
a student user during an AU session. The comment (or set of
comments) may also have an indication of where or when in the AU it
was created.

Usage

A comment (or set of comments) input by the student user of the AU
while in an AU session. The AU collects the data for this element and
reports it to the CMI system.

In the API binding, sequential LMSSetValue() commands create
additional comments adding to the string. Comments are not replaced.

CMI Behavior Notes

The CMI system should have a mechanism to report comments
(collected using this element) to administrative users.

AU Behavior Notes

The user may have the option of leaving comments at any point in the
AU.

File Binding

Name

AU Comments

Files & Obligations

Finish: CMI Optional, AU Optional

Name Format

“[COMMENTS]” — case insensitive

Value Format

A string of type CMICommentINI located in the “[Comments]” group.
Multiple comments can be included in this string. (See data type
definition for CMIComment4096INI)

Leading and training whitespace is not included in this string.

Data type CMIComment4096INI

Examples ; The string contents start at the “<1>" and
; end at the “<e.4>" (inclusive)
[COMMENTS]
<1>The background color is too blue!<1l.e><2>The CDU
panel has the incorrect ‘way points’ displayed for
this route. <2.e><3>The CDU panel has the incorrect
‘way points’ displayed for this route. <3.e><4>The
CDU panel has the incorrect ‘way points’ displayed
for this route. <e.4>
[Eval uati on]

HACP Binding

Name Same as File Binding

HACP Message(s) PutParam: CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

August-16-2004

35 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name Comments From Learner

Data type Same as File Binding

Examples | Same as File Binding
API Binding
Name cmi.comments

APl & Obligations LMSGetValue() : CMI Optional, AU Optional
LMSSetValue() : CMI Optional, AU Optional

Name Format “cmi.comments”

Value Format 4096 Character string. The format is “free form”. There is no formatting
structure to separate multiple comments in an AU session. Square
brackets “[]” are not allowed.

Data type CMIString4096INI

Examples | LMSSetValue(“cmi.evaluation.comments”,"This color is ALL wrong !1”)

August-16-2004 36 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.5 Itemized Comments From Learner

Data Element Name

Itemized Comments From Learner

Definition

An array of comments (freeform textual feedback) made by the
student user during an AU session. Each record in this array is
made up of the following sub-elements:

Iltemized Comments From Learner.Content
Iltemized Comments From Learner.Date
Itemized Comments From Learner.Location
Iltemized Comments From Learner.Time
Each array record sub-element is described individually in this section.

This data element is an alternative to Comments From Learner.

Usage

A set of free-form textual comments input by the student user of
the AU while in an AU session. The AU collects the data for this
element and reports it to the CMI system.

Each individual comment is itemized as separate array element
with additional sub elements.

CMI Behavior Notes

If a CMI receives data from the AU in both Itemized Comments From
Learner and Comments From Learner, the CMI must save the Itemized
Comments From Learner and discard the Comments From Learner
data.

AU Behavior Notes

An AU should only use one method for student comments collection,
Itemized Comments From Learner or Comments From Learner.

2.5.1 Itemized Comments From Learner.Content

Data Element Name

Itemized Comments From Learner.Content

Definition

This data element contains freeform textual feedback (a comment) from
the student user during an AU session.

Usage

A comment input by the student user of the AU while in an AU session.
The AU collects the data for this element and reports it to the CMI
system.

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

Comment

Files & Obligations

Comments File : CMI Optional, AU Optional

Name Format

Field Name: “Comment” case insensitive

Value Format

A free-form text string with no double quotes (“)s or carriage returns, or
control characters allowed.

Data type CMIString255CSV
Examples This is ‘comment’ example.
This is another ‘comment’ example.
HACP Binding
Name Same as File Binding
HACP Message(s) PutComments : CMI Optional, AU Optional
& Obligations

August-16-2004

37 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Itemized Comments From Learner.Content

Obligation

Name Format

Not Applicable

Value Format

Same as File Binding

Data type Same as File Binding
Examples | Same as File Binding
API Binding
Name cmi.evaluation.comments.n.content

API & Obligations

LMSGetValue() : CMI Optional, AU Optional
LMSSetValue() : CMI Optional, AU Optional

Name Format

“cmi.evaluation.comments.n.content” - case sensitive where n is the
index of the array record .

Value Format

A free-form text string with no double quotes (“)s or carriage returns, or
control characters allowed.

Data type

CMIString255CSV

Examples

LMSSetValue(“cmi.evaluation.comments.2.content”,"This color is ALL wrong !'")

August-16-2004

var last_comment = LMSGetValue(“cmi.evaluation.comments.1.content”)

38 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.5.2 Iltemized Comments From Learner.Date

Data Element Name Itemized Comments From Learner.Date

Definition The date (including year, month, and day) at which the student user
made the comment.

Usage

CMI Behavior Notes

AU Behavior Notes

File Binding

Name Date

Files & Obligations Comments File: CMI Optional, AU Optional

Name Format Field Name: “Date” case insensitive
Value Format See CMIDate data type definition
Data type CMIDate
Examples | 1992/05/20
HACP Binding
Name Same as File Binding
HACP Message(s) PutComments: CMI Optional, AU Optional
& Obligations
Name Format Same as File Binding
Value Format Same as File Binding
Data type Same as File Binding
Examples | Same as File Binding
API Binding
Name Not Applicable
APl & Obligations Not Applicable
Name Format Not Applicable
Value Format Not Applicable
Data type Not Applicable
Examples | Not Applicable

August-16-2004 39 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.5.3 Itemized Comments From Learner.Location

Data Element Name

Itemized Comments From Learner.Location

Definition

Indication of where in the AU that the student user made the comment.

Usage

CMI Behavior Notes

AU Behavior Notes

When a developer builds an Assignable Unit, he may give individual
sections or frames in the unit their own identifiers or names. These
may be used to indicate to which part of the AU the student comment
refers.

File Binding

Name

Location

Files & Obligations

Comments File: CMI Optional, AU Optional

Name Format

Field Name: “Location” case insensitive

Value Format

255 character string without (”)s, carriage returns, or control characters.

Data type CMIString255CSV
Examples Frame 13
Position 4-5
HACP Binding
Name Same as File Binding
HACP Message(s) PutComments: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples | Same as File Binding
API Binding
Name cmi.evaluation.comments.n.location

API & Obligations

LMSGetValue() : CMI Optional, AU Optional
LMSSetValue() : CMI Optional, AU Optional

Name Format

“cmi.evaluation.comments.n.location” - case sensitive where n is the
index of the array record.

Value Format

255 character string without (”)s, carriage returns, or control characters.
(See Data Type CMIString255CSV for more detail)

Data type

CMIString255CSV

Examples

August-16-2004

40 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.5.4 Itemized Comments From Learner.Time

Data Element Name

Itemized Comments From Learner.Time

Definition

A chronological point in a 24-hour clock (i.e. “the time”). Identified in
hours, minutes and seconds. The time at which the student makes the
comment.

Usage

At the moment that the student user completes a comment, the AU
should get the time and record it in this element.

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

Time

Files & Obligations

Comments File: CMI Optional, AU Optional

Name Format

Field Name: “Time” case insensitive

Value Format

See data type CMITime for format description.

Data type CMITime
Examples 12:05:33
13:06:14.8
HACP Binding
Name Same as File Binding
HACP Message(s) PutComments: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples | Same as File Binding

API Binding
Name cmi.evaluation.comments.n.time

API & Obligations

LMSGetValue() : CMI Optional, AU Optional
LMSSetValue() : CMI Optional, AU Optional

Name Format

“cmi.evaluation.comments.n.time” — case sensitive where n is the index
of the array record.

Value Format

See CMITime data type Definition

Data type

CMITime

Examples

August-16-2004

41 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.6 Comments From LMS

Data Element Name

Comments From LMS

Definition

This element represents comments that would come from the CMI. An
example of how this might be used is in the form of instructor comments
directed to a particular student (or group of students). These types of
comments are directed at the student from the CMI so that the AU may
present them to the student when appropriate.

Usage

A comment or set of comments input by an instructor or administrative
user using the CMI system. The AU reads this data and displays it to
the student.

CMI Behavior Notes

The CMI system may have a mechanism to allow instructors to direct
their comments to specific student(s).

AU Behavior Notes

An AU may display comments from the CMI at the beginning of each
session.

File Binding

Name

CMI Comments

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“[COMMENTS]” — case insensitive

Value Format

A string of type CMICommentINI located in the “[Comments]” group.
Multiple comments can be included in this string. (See data type
definition for CMIComment4096INI)

Leading and training whitespace is not included in this string. Square
brackets “[]” are not allowed.

Data type CMIComment4096INI

Examples ; The string contents start at the “<1>" and
; ends at the “<e.4>" (inclusive)
[COMMENTS]
<1>Notice that the background color is too
bl ue! <1. e><2>Notice that the CDU panel has the
i ncorrect ‘way points’ displayed for this route in
the Taxi-Qut phase. <2.e><3> Notice the CDU panel has
the incorrect ‘way points’ displayed for this route
in the Cinb Phase. <3.e><4> Notice the CDU panel has
the incorrect ‘way points’ displayed for this route
in Cruise. <e.4>
[Eval uati on]

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam: CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name cmi.comments_from_Ims

August-16-2004

42 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name Comments From LMS

API & Obligations LMSGetValue() : CMI Optional , AU Optional

Name Format “cmi.comments_from_Ims”

Value Format 4096 Character string. The format is “free form”. There is no formatting
structure to separate multiple comments in an AU session. Square
brackets “[]” are not allowed.

Data type CMIString4096INI

Examples [var instructor comments = LMSGetValue (“cmi.comments _from Ims”)

August-16-2004 43 CMI001 Version 4.0

2.7 Evaluation

AICC - CMI Guidelines for Interoperability

Data Element Name

Evaluation

Definition

A grouping for a variety of data elements that are provided to the
AU by the CMI.

Usage

All data elements in this category are optional.

Membership

Evaluation.Comments_File
Evaluation.Course_ID
Evaluation.Interactions_File
Evaluation.Objective_Status_File
Evaluation.Path_File
Evaluation.Performance_File

2.7.1 Evaluation.Comments_File

Data Element Name

Evaluation.Comments File

Definition

A fully qualified file path for the Comments file, which the AU should
construct if it is to pass itemized comments back to the CMI system.

See (the “File Binding” of) Itemized Comments from Learner for the data
format of this file. (This data element is only used in the File-Binding)

Usage CMI determines the location for the Comments File
AU writes the Comments file at this location prior to session termination.
If this element is not present or set to an empty string, then a comments
file will not be written.

CMI Behavior

AU Behavior AU writes the Comments file at this location prior to session termination.
The AU may append records to this file during different points in an AU’s
session.

File Binding

Name Comments_File

Files & Obligations

Comments_File : CMI Optional, AU Optional

Name Format

“Comments_File” - case insensitive

Value Format

See description for the CMIFileNameFull data type

Data type CMIFileNameFull
Examples Conments_File = C \wi ndows\item zed_conment s. t xt
COMMVENTS_FI LE = BB:\somment . cmi
COMMENTS_FILE = C\ directory with spaces\file with spaces. txt
HACP Binding
Name Not Applicable
HACP Message(s) Not Applicable
& Obligations

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable

Examples | Not Applicable
API Binding

Name Not Applicable

APl & Obligations

Not Applicable

August-16-2004

44 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Evaluation.Comments_File

Name Format

Not Applicable

Value Format

Not Applicable

Data type

Not Applicable

Examples

| Not Applicable

2.7.2 Evaluation.Course_ID

Data Element Name

Evaluation.Course_ID

Definition

The unique identifier for the course of which the current AU is a part. See
COURSE_ID in the course structure.

Usage

The CMI provides the Course ID from the course structure to the AU. The
AU used this value of this element to provide Course ID when reporting
data out to the following elements:

Itemized Comments From Learner

Interactions

Objectives

Paths

CMI Behavior Notes

AU Behavior Notes

AU uses the value of this element to provide Course ID for reporting other
data elements in files or messages that require Course ID.

File Binding

Name

Course_ID

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Course_ID” — case insensitive

Value Format

See data type CMlldentifierDevID for format description.

While the CMlldentifierDevID data format is valid, it is recommended that
data type CMlldentifierGUID’s formatting rules be used instead to reduce
the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMIIdentifierDevID.

Data type CMlldentifierDevID
Examples 737-300-UAL-RND1
SCORM-101
HACP Binding
Name Same as File Binding
HACP Message(s) Getparam(response) : CMI Optional, AU Optional
& Obligations
Obligation Getparam(response) : CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name Not Applicable

APl & Obligations

Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type

Not Applicable

Examples

| Not Applicable

August-16-2004

45 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.7.3 Evaluation.Interactions_File

Data Element Name

Evaluation. Interactions File

Definition

A fully qualified file path for the Interactions file, which the AU should
construct if it is to pass Interactions data back to the CMI system. See
(the “File Binding” of) Interactions for the data format of this file.

This data element is only used in the File-Binding.

Usage

The CMI determines the location for the Interactions File

The AU writes the Interactions file at this location prior to session
termination. If this element is not present or set to an empty string, then
the Interactions File will not be written.

CMI Behavior Notes

After the AU session has terminated, the CMI should read and store the
contents of this file (and provide a reporting mechanism for administrative
users).

AU Behavior Notes

The AU may append records to this file during different points in an AU’s
session.

File Binding

Name

Interactions_File

Files & Obligations

Interactions_File: CMI Optional, AU Optional

Name Format

“Interactions_File” - case insensitive

Value Format

See description for the CMIFileNameFull data type

Data type CMIFileNameFull
Examples Interactions_File = C\w ndows\interact.cni
Interactions_File = BB:\inter.txt
Interactions_File = C\ directory with spaces\file with spaces.txt
HACP Binding
Name Not Applicable
HACP Message(s) Not Applicable
& Obligations

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable

Examples | Not Applicable
API Binding

Name Not Applicable

APl & Obligations

Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type

Not Applicable

Examples

| Not Applicable

2.7.4 Evaluation.Objective_Status_File

Data Element Name

Evaluation.Objective_Status_File

Definition

A fully qualified file path for the Objective_Status file, which the AU should
construct if it is to pass itemized objectives back to the CMI system.

August-16-2004

46 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Evaluation.Objective Status_File

See (the “File Binding” of) Objectives for the data format of this file.

This data element is only used in the File-Binding.

Usage

The CMI determines the location for the Objective_Status File

The AU writes the Objective_Status file at this location prior to session
termination. If this element is not present or set to an empty string, then
the Objective Status File will not be written.

CMI Behavior Notes

After the AU session has terminated, the CMI should read and store the
contents of this file (and provide a reporting mechanism for administrative
users).

AU Behavior Notes

The AU may append records to this file during different points in an AU
sessions.

File Binding

Name

Objective_Status_File

Files & Obligations

Objective_Status_File: CMI Optional, AU Optional

Name Format

“Objective_Status_File” - case insensitive

Value Format

See description for the CMIFileNameFull data type.

Data type CMIFileNameFull

Examples Qbj ective_Status_File = C:\w ndows\ Cbj ectives status.cm
Obj ective_Status_File = X:\objstat.txt
Qbj ective_Status_File = C\dirl\file with spaces. txt

HACP Binding

Name Not Applicable

HACP Message(s) Not Applicable

& Obligations

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable

Examples | Not Applicable
API Binding

Name Not Applicable

APl & Obligations

Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type

Not Applicable

Examples

| Not Applicable

2.7.5 Evaluation.Path_File

Data Element Name

Evaluation.Path_File

Definition

A fully qualified file path for the Path file, which the AU should construct if
it is to pass Path data back to the CMI system.

See (the “File Binding” of) Path for the data format of this file.

This data element is only used in the File-Binding.

Usage

CMI determines the location for the Path File

August-16-2004

47 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Evaluation.Path_File

AU writes the Path file at this location prior to session termination. If this
element is not present or set to an empty string, then the Path File will not
be written

CMI Behavior After the AU session has terminated, the CMI should read and store the
contents of this file (and provide a reporting mechanism for administrative
users).

AU Behavior AU writes the Path file at this location prior to session termination. The
AU may append records to this file during different points in an AU
sessions.

File Binding

Name Path_File

Files & Obligations

Path_File: CMI Optional, AU Optional

Name Format

“Path_File” - case insensitive

Value Format

See description for the CMIFileNameFull data type.

Data type CMIFileNameFull
Examples Path_File = C:\w ndows\ path dat a. t xt
PATH_FI LE = BB:\ pat h. cm
PATH FILE = C\directory with spaces\file with spaces.txt
HACP Binding
Name Not Applicable
HACP Message(s) Not Applicable
& Obligations

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable

Examples | Not Applicable
API Binding

Name Not Applicable

APl & Obligations

Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable
Examples | Not Applicable

2.7.6 Evaluation.Performance_File

Data Element Name Evaluation.Performance_File

Definition A fully qualified file path for the Performance file, which the AU should
construct if it is to pass Performance data back to the CMI system.

See (the “File Binding” of) Performance for the data format of this file.
This data element is only used in the File-Binding.

Usage The CMI determines the location for the Performance File. The AU writes
the Path file at this location prior to session termination. If this element is
not present or set to an empty string, then the Performance File will not be
written

CMI Behavior After the AU session has terminated, the CMI should read and store the

contents of this file (and provide a reporting mechanism for administrative
users).

August-16-2004

48 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Evaluation.Performance File

AU Behavior AU writes the Performance file at this location prior to session termination.
The AU may append records to this file during different points in an AU’s
session.

File Binding

Name Performance_File

Files & Obligations

Performance_File: CMI Optional, AU Optional

Name Format

“Performance_File” - case insensitive

Value Format

See description for the CMIFileNameFull data type.

Data type CMIFileNameFull
Examples Performance_File = C \w ndows\ perf data.txt
Performance_File = BB:\ perf.cm
Performance_File = C \directory with spaces\file with spaces.txt
HACP Binding
Name Not Applicable
HACP Message(s) Not Applicable
& Obligations

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable

Examples | Not Applicable
API Binding

Name Not Applicable

API & Obligations

Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type

Not Applicable

Examples

| Not Applicable

August-16-2004

49

CMI001 Version 4.0

2.8 Objectives

AICC - CMI Guidelines for Interoperability

Data Element Name

Objectives

Definition

This element contains Information on how the student has
performed on objectives related to the AU. The performance
may be related to previous sessions in the AU, or to the student
user’s performance in other AUs (in the same course) related to
the same objectives. These objectives are only those associated
with the current launching AU, not all the objectives in the
course or curriculum.

This element is an array. Each record in this array is made up
of the following sub-elements:

Objectives.ID

Objectives.Score

Objectives.Status

Objectives.Date

Objectives.Time

Objectives.Mastery Time

Each array record sub-element is described individually in this section.

Usage

Information for each individual objective is itemized as separate
array record with additional sub elements. The CMI may
provide the values for each sub element at AU session start.
These values may be determined by completion requirements in
the course structure (see Course.Elements.Completion
Requirements) or prior AU session results.

The AU may set the values of each of the provided sub element
prior to session end.

An objective may be associated with more than one AU in the
same course but only those objectives associated with an AU in
the course structure will have their data passed to that AU at run
time. An AU may set Objectives.Score and Objectives.Score
data for an objective that another AU may read and change.

Only following Objectives data elements can be transmitted from
the CMI to the AU. These elements are as follows:
Objectives.ID
Objectives.Score
Objectives.Status

The Objectives array is the only array in the communication data
model that has elements that both the CMI and the AU can
modify.

File & HACP Bindings Usage Specifics

Objectives.ID, Objectives.Score, Objectives.Status elements are
transmitted to the AU using the Startup File (File binding) or the
GetParam Message (HACP binding).

In addition (with the File and HACP bindings), these same 3

August-16-2004

50 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name Objectives

data elements have 2 methods that the AU can use to transmit
this data to the CMI. They are as follows:

Reporting Method #1 — This method only allows for the
reporting of Objectives.ID, Objectives.Score, and
Objectives.Status

= HACP Binding: PutParam

= File Binding: Finish File

Reporting Method #2 - — This method allows for the
reporting of all sub-elements in Objectives.

= HACP Binding: PutObjectives

= File Binding: Objectives Status File

If an AU (with the File or HACP binding) reports this data using
both methods (and the CMI used supports both methods), then
the following rules of precedence apply:

File-Based Binding: Method #1 data takes precedence over
Method #2 data.

HACP Binding: The last HACP message posted
(PutObjectives or PutParam) in the AU
session takes precedence.

API Binding Usage Specifics

The API binding only has one method for the AU to report all of
the sub elements in Objectives to the CMI, LMSSetValue().

The CMI system is responsible for initializing all Objectives array
data elements during or prior to the AU calling LMSiIntialize().

CMI Behavior Notes

AU Behavior Notes

2.8.1 Objectives.ID

Data Element Name Objectives.ID

Definition A developer defined, course-unique identifier for an objective.

Usage When an AU sets this data element, it must pass the value of Course
Elements.Developer ID associated with the objective (that is associated
with that AU) in the course structure.

When the CMI sets this data element, it must pass the value of Course
Elements.Developer ID associated with the objective (that is associated
with that AU being launched) in the course structure.

CMI Behavior Notes

AU Behavior Notes

File Binding

Name Objective ID

August-16-2004 51 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Objectives.ID

Files & Obligations

Startup:
Finish:
Objective Status File:

CMI Optional, AU Optional
CMI Mandatory, AU Optional
CMI Optional, AU Optional

Name Format

Depends on method used

Method #1: “J_ID.n” (case insensitive) where n number from “1” to
“9999” with no leading zeros.
Method #2: Not applicable

Value Format

See description of data type CMIldentifierDevID

While the CMlldentifierDevID data format is valid, it is recommended
that data type CMIlldentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIldentifierGUIDis a subset of CMIIdentifierDevID.

Data type CMlldentifierDevID

Examples “OBJEng-Start-1”
J_ID.1= OBJ-Eng-Start-1

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam(response): CMI Optional, AU Optional

& Obligations PutParam: CMI Optional, AU Optional
PutObjectives: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.objectives.n.id”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.objectives.n.id” — case sensitive where n is the (zero-based) array
index

Value Format

See description of data type CMIlldentifierINI

Data type CMlldentifierINI
Examples LMSSetValue(“cmi.objectives.2.id”, “OBJ}Eng-Start-1")
var objective var = LMSGetValue(“cmi.objectives.2.id")
2.8.2 Objectives.Score

Data Element Name

Objectives.Score

Definition

Indication of the score obtained by the student after each attempt to
master an objective. A maximum and minimum may accompany score. It
may have up to three sub-elements:

Raw This may be an unprocessed or processed indicator of how
the student performed with the AU’s interactions (related to
the objective) experienced.

Max This is the largest score the student could have with the AU’s

interactions (related to the objective) experienced.

August-16-2004

52 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Obijectives.Score

Min This is the smallest score that the student could have
achieved with the AU’s interactions (related to the objective)
experienced.

Usage

If Raw is not accompanied by Max or Min, it may be determined and
calculated in any manner that makes sense to the program designer.
If Raw is accompanied by Max or Min, it reflects the performance of

the learner relative to the max and min values.

If Max accompanies Raw with no Min, Min is assumed to be “0".

If Min is included then Max must be included.

The value of each of the score sub-elements (in relation to one another)
must be as follows:
Objectives.Score.Max >= Objectives.Score.Raw >=
Objectives.Score.Min

The AU is responsible for setting this element and the CMI is
responsible for providing the value(s) for this element to the AU (in
subsequent AU sessions) given the following rules:
CMI must initialize all score Objectives.Score elements to an
empty string (")
On subsequent launches of a given AU, The CMI must provide
the current value Objectives.Score if another AU updated it.
The CMI must update the value of Objectives.Score returned by
the AU unless Core.Credit has a value of “no-credit” for that AU
session.

If the AU sets Objectives.Score multiple times in a session, only the final
value is recorded by the CMI (When Core.Credit has a value of “credit”).

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Score
Files & Obligations Startup: CMI Optional, AU Optional
Finish: CMI CMI Optional, AU Optional

Objective Status File: CMI Optional, AU Optional

Name Format

Depends on method used

Method #1: “J_Score.n” (case insensitive) where n number from “1”
to “9999” with no leading zeros.

Method #2: Not applicable

Value Format

See description of data type CMIScorelNI

Data type CMIScorelNI

Examples “75,100, 0"
J score.1 = 75,100,0
J score.34 =75

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam(response): CMI Optional, AU Optional

& Obligations PutParam: CMI Mandatory, AU Optional
PutObjectives: CMI Optional, AU Optional

Name Format

Same as File Binding

August-16-2004

53 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Obijectives.Score

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.objectives.n.score.raw”

“cmi.objectives.n.score.max”
“cmi.objectives.n.score.min”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.objectives.n.score.raw” — case sensitive where n is the (zero-
based) array index
“cmi.objectives.n.score.max” — case sensitive where n is the (zero-
based) array index
“cmi.objectives.n.score.min” — case sensitive where n is the (zero-
based) array index

Value Format

Data type

CMIDecimal (for each sub element)

Examples

LMSSetValue(“cmi.objectives.2.score.raw”, “75")
LMSSetValue(“cmi.objectives.2.score.max”, “75")
LMSSetValue(“cmi.objectives.2.score.min”, “75”)

var objscoreraw = LMSGetValue(“cmi.objectives.2.score.raw”)
var objscoremax = LMSGetValue(“cmi.objectives.2.score.max”)

2.8.3 Objectives.Status

Data Element Name

Objectives.Status

Definition

Indication of the status of an objective. Six statuses are possible. The CMI
system determines this status based on data returned from the AU and

other factors. Six status values are possible:

passed: A necessary number of objectives in the AU were mastered
by the student, and/or the necessary score was achieved. Student is

considered to have “completed” the objective and “passed”.

completed: The student has visited all segments of the AU related to
the objective. The student may or may not have passed. The CMI
system may make the judgment of whether he passed based upon

the score (if one is provided).

failed: The objective was not passed. The student experienced some
kind of assessment within the AU (specifically related to the objective)

but did not demonstrate mastery of the objective.

incomplete: The AU was started but not finished. The student did not

view all the required elements in the AU related to this objective.

browsed: The student launched the AU with a Core.Lesson Mode

value of “browse” on the initial attempt. In “browse” mode, the

student experienced one or more segments of the AU related to the

objective.

not attempted: The student has not visited any of the segments of

the AU related to this objective.".

Usage

Normally, the AU determines Objectives.Status and passes it to the CMI.
On re-entry into the AU, the CMI passes the previous status returned by
the AU. However, the CMI can change the status based on the following

August-16-2004

54 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Objectives.Status

rules:

1) If the AU is part of a course that has completion requirements or
objectives relationships in its course structure, then the CMI can
change the status depending on the rules defined. (See Course
Structure)

2) |If there are no completion requirements/objectives relationships
rules defined in the course structure, then the CMI cannot change
an AU determined objective status.

3) If the CMI sets Core.Credit to “no-credit” for the AU session, the CMI
is not allowed to change/update Objectives.Status based on data
set by that AU session.

4) The CMI cannot change a previously (CMI) recorded
Objectives.Status to “not attempted”

CMI Behavior The CMI is responsible for setting the initial value to Objectives.Status
"not attempted".
AU Behavior
File Binding
Name Status.x
In Files Startup, Finish
Obligation Startup: CMI Optional, Finish: AU Optional

Name Format

Depends on method used

Method #1: “J_Status.n” (case insensitive) where n number from “1” to
“9999” with no leading zeros.
Method #2: Not applicable

Value Format

One of the following vocabulary values: “passed” , “failed”, “complete”,

“incomplete”, “not attempted”, or “browsed”. All values are case
insensitive. Only the first character is significant.

Data type CMIVocabularyINI:Status
Examples J_Status.3 = Passed
J_STATUS.1 =c
=
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam(response) : CMI Optional, AU optional
& Obligations PutParam : CMI Optional, AU optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples Same as File Binding
API Binding

Name cmi.objectives.n. status

API & Obligations

LMSGetValue() :
LMSSetValue() :

CMI Optional, AU optional
CMI Optional, AU optional

Name Format

“cmi.objectives.n.status” - case sensitive where n is the (zero-based)
array index.

Value Format

A specific vocabulary limited to one of the following values: “passed”,
“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”. All
values are case sensitive

Data type

CMIVocabulary:Status

Examples

August-16-2004

var stats = LMSGetValue(“cmi.objectives.5.status”)

55 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Objectives.Status

LMSSetValue(“cmi.objectives.8.status”, “passed”)

2.8.4 Objectives.Date

Data Element Name

Objectives.Date

Definition

The calendar day on which the objective status last updated by the AU.

Usage This element is set by the AU and read by the CMI
CMI Behavior
AU Behavior
File Binding
Name Date
In Files Objective Status File
Obligation Objective Status File: CMI Optional, AU optional

Name Format

Not Applicable

Value Format

See description of data type CMIDate.

Data type CMIDate
Examples 1997/05/20
HACP Binding
Name Same as File Binding
In HACP PutObijectives
Message(s)
Obligation PutObjectives: CMI Optional, AU optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples Same as File Binding
API Binding

Name Not Applicable

Supported API Not Applicable

Obligation Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type

Not Applicable

Examples

Not Applicable

Not Applicable

2.8.5 Objectives.Time

Data Element Name

Objectives.Time

Definition

The time of day at which the objective status was last updated by the AU.

Usage This element is set by the AU and read by the CMI
CMI Behavior
AU Behavior
File Binding
Name Time
In Files Objective Status File
Obligation Objective Status File: CMI Optional, AU optional

Name Format

Not Applicable

Value Format

See description of data type CMITime

Data type

CMITime

Examples

12:01:55

August-16-2004

56 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Objectives.Time

12:01:55.23
HACP Binding
Name Same as File Binding
In HACP PutObjectives
Message(s)
Obligation PutObjectives: CMI Optional, AU optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples Same as File Binding
API Binding

Name Not Applicable

Supported API Not Applicable

Obligation Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

Data type Not Applicable
Examples Not Applicable
Not Applicable

2.8.6 Objectives.Mastery Time

Data Element Name

Objectives.Mastery Time

Definition

The total time spent by the student on the objective material during the

AU session.

Usage

This element is set by the AU and read by the CMI

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Mastery Time
In Files Objective Status File
Obligation Objective Status File: CMI Optional, AU optional

Name Format

Not Applicable

Value Format

See description of data type CMITimespan.

Data type CMITimespan
Examples 12:01:55
0012:01:55.23
HACP Binding
Name Same as File Binding
In HACP PutObjectives
Message(s)
Obligation PutObjectives: CMI Optional, AU optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples Same as File Binding
API Binding

Name Not Applicable

Supported API Not Applicable

Obligation Not Applicable

Name Format

Not Applicable

Value Format

Not Applicable

August-16-2004

57

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Objectives.Mastery Time

Data type Not Applicable
Examples Not Applicable
Not Applicable

August-16-2004 58 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.9 Student Data

Data Element Name Student Data

Definition A grouping for a variety of data elements.

Usage All data elements in this category are optional. (See individual
member data elements for obligations)

Membership Student Data.Attempt Number

Student Data.Tries
Student Data.Tries.Try_Score
Student Data.Tries.Try_Status
Student Data.Tries. Try_Time

Student Data.Mastery Score

Student Data.Max Time Allowed

Student Data.Time Limit Action

Student Data.Tries During Lesson

Student Data.Score.n

Student Data.Lesson_Status.n

2.9.1 Student Data.Attempt Number

Data Element Name Student Data.Attempt Number

Definition The number of previous AU sessions that student has had with the
current AU.

Usage This element is set by the CMI. The CMI must initialize this element to

“0". For the student’s initial session with the AU, the
Student Data.Attempt Number will always be “0”.

CMI Behavior Notes

AU Behavior Notes

File Binding

Name Attempt_ Number

Files & Obligations Startup : CMI Optional, AU Optional

Name Format “Attempt_Number” — case insensitive
Value Format A integer number from 0 to 100 (unsigned)
Data type CMlInteger

Examples Attempt Number =0

ATTEMPT_NUMBER = 3

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response) : CMI Optional, AU Optional
& Obligations

Name Format Same as File Binding
Value Format Same as File Binding
Data type Same as File Binding
Examples | Same as File Binding
API Binding
Name cmi.student data.attempt_number

APl & Obligations LMSGetValue() : CMI Mandatory

August-16-2004 59 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Attempt Number

Name Format

‘cmi.student data.attempt_number” — case sensitive

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

| var x = LMSGetValue(“cmi.student data.attempt number”)

2.9.2 Student Data.Tries

Data Element Name

Student Data.Tries

Definition

This element contains a list of attempts made by the student
user to complete the AU'’s required tasks during an AU session.
These attempts may correspond to embedded test(s) or
exercise(s) in the AU.

This element is an array. Each record in this array is made up
of the following sub-elements:

Student Data.Tries.Try_Score

Student Data.Tries.Try_Status

Student Data.Tries. Try_Time

Each array record sub-element is described individually in this section.

Usage

The element is set by the AU and stored by the CMI. Data
stored from previous AU sessions (in these sub-elements) are
not made available to the AU.

CMI Behavior Notes

The CMI should provide a means for administrative users to report data
collected from this element.

AU Behavior Notes

2.9.2.1 Student Data.Tries.Try Score

Data Element Name

Student Data.Tries.Try_Score

Definition

Indication of the score obtained by the student after each attempt to
complete the AU within the current AU session. A maximum and
minimum may accompany score. It may have up to three sub-elements:
Raw This may be an unprocessed or processed indicator of how
the student performed with the AU’s interactions experienced.

Max This is the largest score the student could have with the AU’s
interactions experienced.

Min This is the smallest score that the student could have
achieved with the AU's interactions experienced.

Usage

If Raw is not accompanied by Max or Min, it may be determined and
calculated in any manner that makes sense to the program designer.
If Raw is accompanied by Max or Min, it reflects the performance of

the learner relative to the max and min values.

If Max accompanies Raw with no Min, Min is assumed to be “0”.

If Min is included then Max must be included.

The AU is responsible for setting this element and the CMI is
responsible for storing it.

CMI Behavior Notes

AU Behavior Notes

August-16-2004

60 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Tries.Try Score

File Binding

Name

Try Score

Files & Obligations

Finish: CMI Optional, AU Optional

Name Format

“Try_Score.n” (case insensitive CMI Optional, AU Optional) where n is
the array index (a number from “1” to “100” with no leading zeros).

Value Format

See description of data type CMIScorelNI

Data type CMIScorelNI
Examples Try_Score.1l = 75,100,0
Try_Score.34 = 75
HACP Binding
Name Same as File Binding
HACP Message(s) PutParam: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_data.tries.n.score.raw”

“cmi.student_data.tries.n.score.max”
“cmi.student_data.tries.n.score.min”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

case sensitive where n is the (zero-based) array index

“cmi.student_data.tries.n.score.raw”
“cmi.student_data.tries.n.score.max”
“cmi.student data.tries.n.score.min

Value Format

Data type

CMIDecimal (for each sub element)

Examples

LMSSetValue(“cmi.student_data.tries.2.score.raw”, “75”)
LMSSetValue(“cmi.student_data.tries.2.score.max”, “75")
LMSSetValue(“cmi.student_data.tries.2.score.min”, “75")

2.9.2.2 Student Data.Tries.Try Status

Data Element Name

Student Data.Tries.Try_Status

Definition

The status of the attempt within the AU session.

Usage

Six status values are possible:

passed: Mastery of the AU’s material was achieved during the

attempt.

completed: The student has visited all relevant segments of the AU
during the attempt. The student may or may not have passed the

AU.

failed: The student experienced some kind of assessment within the
AU but did not demonstrate mastery of the material presented in the

attempt.

incomplete: The attempt in the AU material was started but not
finished. The student did not view all the required elements in the

AU to complete the attempt.

August-16-2004

61

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Tries.Try Status

browsed: The student launched the AU with a Core.Lesson Mode
value of “browse” on the initial attempt. In “browse” mode, the
student experienced one or more segments of the AU related to the
attempt. (Note: this status is only possible on the initial attempt in
the first AU session)

not attempted: The student has not visited any of the segments of
the AU related to the attempt

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

Try Status

Files & Obligations

Finish: CMI Optional, AU Optional

Name Format

“Try_Status.n” (case insensitive CMI Mandatory, AU Optional) where n
is the array index (a number from “1” to “100” with no leading zeros).

Value Format

See description of data type CMIVocabularyINI:Status

Data type CMIVocabularyINI:Status
Examples Try_Status.1 = passed
Try_Status.23 = C
HACP Binding
Name Same as File Binding
HACP Message(s) PutParam: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student data.tries.n.status

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

case sensitive where n is the (zero-based) array index:
“cmi.student data.tries.n.status”

Value Format

Data type

CMIVocabulary:Status

Examples

LMSSetValue(“cmi.student_data.status”, “passed”)
LMSSetValue(“cmi.student_data.tries.2.status”, “failed”)
LMSSetValue(“cmi.student data.tries.2.status”, “incomplete”)

2.9.2.3 Student Data.Tries.Try Time

Data Element Name

Student Data.Tries.Try_Time

Definition

The time elapsed during the student user’s attempt to complete
the AU’s required tasks during the AU session.

Usage

The value of this element is only the time spent for a specific “attempt” in
the AU session (not the entire AU session). An AU may have multiple
“attempts” within a given AU session.

CMI Behavior Notes

AU Behavior Notes

File Binding

August-16-2004

62 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Tries.Try Time

Name

Try_Time

Files & Obligations

Finish: CMI Optional, AU Optional

Name Format

“Try_Time.n” (case insensitive CMI Optional, AU Optional) where n is
the array index (a number from “1” to “100” with no leading zeros).

Value Format

See description of data type CMITimespan

Data type CMITimespan
Examples Try _Tinme.1 = 0000:10: 15. 01
Try Tinme.23 = 00:11: 12
HACP Binding
Name Same as File Binding
HACP Message(s) PutParam: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_data.tries.n.time

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

case sensitive where n is the (zero-based) array index
cmi.student_data.tries.n.time

Value Format

Data type

CMITimespan

Examples

LMSSetValue(“cmi.student_data.tries.2.time”,"00:00:30")
LMSSetValue(“cmi.student_data.tries.2.time”,“00:01:30.45")
LMSSetValue(“cmi.student_data.tries.2.time”,“00:02:30.01")

2.9.3 Student Data.Mastery Score

Data Element Name

Student Data.Mastery Score

Definition

This element defines a score level at which an AU is considered
mastered.

Usage

This element is set by the CMI. When the Core.Score.Raw returned by
an AU session is greater than or equal to the Student Data.Mastery
Score, then the student is considered to have passed, or mastered the
content. If the value of Core.Score.Raw returned is less than Student
Data.Mastery Score then the student is considered to have failed the
content.

If a value is present for both Student Data.Mastery Score and
Core.Score.Raw, the CMI must change the Core.Lesson Status to
“passed” or “failed” accordingly for that AU. (unless Core.Credit is set to
“no-credit” or completion requirements rules in the course structure have
additional mastery requirements)

If the AU does not return a value for Core.Score.Raw, then the student is

August-16-2004

63 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Mastery Score

considered to have not performed the portion of the AU’s content that
was the scored activity and the CMI does not modify Core.Lesson Status
based on Student Data.Mastery Score.

The value for Student Data.Mastery Score is provided by the CMI.

CMI Behavior Notes

AU Behavior Notes

Since this element is optional, it is recommended that an AU have a
default mastery score internally defined in the event that the CMI does
not provide .

File Binding

Name

Mastery Score

Files & Obligations

Startup : CMI Optional, AU Optional

Name Format

“Mastery Score” - case insensitive

Value Format Empty (") string or decimal number. See description of data type
CMIDecimal

Data type CMIDecimal

Examples Mastery_Score = 75
Mastery_Score = 75.6

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response): CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_data.mastery score

APl & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_data.mastery score” - case sensitive

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

var mc = LMSGetValue(“cmi.student_data.mastery score”)

2.9.4 Student Data.Max Time Allowed

Data Element Name

Student Data.Max Time Allowed

Definition

The amount of time the student is allowed to have in the current AU
session. See Student Data.Max Time Limit Action for the AU's
expected response to exceeding this time limit.

Usage

This element is set by the CMI.

CMI Behavior Notes

AU Behavior Notes

See Student Data.Max Time Limit Action .

File Binding

Name

Max_Time_Allowed

Files & Obligations

Startup : CMI Optional, AU Optional

August-16-2004

64 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Max Time Allowed

Name Format

“Max_Time_Allowed” - case insensitive

Value Format

See description of data type CMITimespan

Data type CMITimespan
Examples Max_Ti me_Al |l owed = 0000: 10: 00
Max_Ti me_Al | owed = 00: 20: 00. 34
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_data.max_time_allowed

APl & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_data.max_time_allowed” -case sensitive

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

var mc = LMSGetValue(“cmi.student data.max_time_allowed”)

2.9.5 Student Data.Time Limit Action

Data Element Name

Student Data.Max Time Limit Action

Definition

Indicates to the AU what actions to perform when the Student Data.Max
Time Allowed time limit is exceeded for the AU session.

Usage

There are four possible values for this data element:
Exit, Message — The AU displays a message to the student
(indicating that the time limit was exceeded) and then exits the AU
session.
Exit, No Message - The AU session exits without displaying a
message to the student
Continue, Message - The AU session continues but AU displays a
message to the student (indicating that the time limit) was exceeded.
Continue, No Message - The AU session continues without
displaying a message to the student (i.e. the AU ignores the time
limit being exceeded)

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

Time_Limit_Action

Files & Obligations

Startup : CMI Optional, AU Optional

Name Format

“Max_Time_Allowed” - case insensitive

Value Format

See description of data type CMIVocabularyINI:Time Limit Action

Data type

CMIVocabularyINI:Time Limit Action

August-16-2004

65 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Max Time Limit Action

Examples

Time_Limt_Action = Continue, Message

Time_Limt_Action = E, n

HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_data.time_limit_action

APl & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_data.time_limit_action” - case sensitive

Value Format

See description of data type CMIVocabulary:Time Limit Action

Data type

CMIVocabulary:Time Limit Action

Examples

var mc = LMSGetValue(“cmi.student_data.time_limit_action”)

2.9.6 Student Data.Tries During Lesson

Data Element Name

Student Data.Tries During Lesson

Definition

The number of attempts made by the student user to complete the AU’s
required tasks during an AU session. These attempts may correspond to
embedded test(s) or exercise(s) in the AU. The value of this element
directly corresponds to the number of array records in the Student
Data.Tries.

Usage

This element is set by the AU.

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

Tries_During_Lesson

Files & Obligations

Finish: CMI Optional, AU Optional

Name Format

“Tries_During_Lesson” - case insensitive

Value Format

Data type CMlInteger
Examples Tries_During_Lesson =1
TRI ES_DURI NG_LESSON = 5
HACP Binding
Name Same as File Binding
HACP Message(s) PutParam: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

Same as File Binding

Same as File Binding

August-16-2004

66 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Tries During Lesson

API Binding
Name cmi.student_data.tries_during_lesson
API & Obligations LMSSetValue(): CMI Optional, AU Optional
LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student data.tries_during lesson -case sensitive

Value Format

Same as File Binding

Data type Same as File Binding
Examples LMSSetValue(“cmi.student_data.tries_during_lesson”)
2.9.7 Student Data.Sessions Journal

Data Element Name

Student Data.Session Journal

Definition

This element contains score and status data from previous AU sessions.
It is intended to provide a session history so that the AU designer may
vary the current AU session presentation based on student user
performance in past sessions.

This element is an array. Each record in this array is made up
of the following sub-elements:

Student Data.Session Journal.Lesson Score

Student Data.Session Journal.Lesson Status

29.71

Student Data.Sessions Journal.Lesson Score

Data Element Name

Student Data.Session Journal.Lesson Score

Definition

This data element contains the value of Core.Score returned from a
previous AU session indicated by the array index.

See 2.1.10 Core.Score for a detailed description.

Usage

The CMI sets the value of this element based on data returned from
prior AU sessions. It is read only to the AU. See 2.1.10 Core.Score for
more information on score usage.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name score.n
Files & Obligations Startup:

Core.Score.Raw:
Core.Score.Max:

CMI and AU Optional
If Core.Score.Min exists, then CMI and AU
Mandatory, otherwise optional.

Core.Score.Min: CMI and AU Optional

Name Format

“score.n” (case insensitive) where n is a number from “1” to “9999” with
no leading zeros. The index value of “n ” corresponds directly to the
ordinal number of previous sessions (i.e. “1” is the value for the first AU
session, “2” is the second AU session, etc.)

August-16-2004

67 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Session Journal.Lesson Score

Value Format

See 2.1.10 Core.Score

Data type See 2.1.10 Core.Score
Examples score.1l = 75
score.2 = 75.6
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_data.attempt_records.n.score.raw

cmi.student_data.attempt_records.n.score.min
cmi.student_data.attempt_records.n.score.max

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_data.lesson_status.n” - case sensitive where n is the (zero-
based) array index. The index value of “n ” corresponds to the ordinal
number of previous sessions minus 1. (i.e. “0” is the value for the first
AU session, “1” is the second AU session, etc.)

Value Format

See 2.1.10 Core.Score

Data type See 2.1.10 Core.Score
Examples session2_score_raw = LMSGetValue(“attempt_records.l.score.raw”)
session2_score_min = LMSGetValue(“attempt_records.1.score.min”)
session2_score_max = LMSGetValue(“attempt_records.1.score.max”)
29.7.2 Student Data.Sessions Journal.Lesson Status

Data Element Name

Student Data.Session Journal.Lesson Status

Definition

This data element contains the value of Core.Lesson Status returned
from an previous AU session indicated by the array index.

See 2.1.6 Core.Lesson Status for more information.

Usage

The CMI sets the value of this element based on data returned from
prior AU sessions. It is read only to the AU.

See 2.1.6 Core.Lesson Status for more information on usage.

CMI Behavior Notes

AU Behavior Notes

File Binding

Name

lesson_status.n

Files & Obligations

Startup : CMI Optional, AU Optional

August-16-2004

68 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Data.Session Journal.Lesson Status

Name Format

“lesson_status. n” (case insensitive) where n is a number from “1” to
“9999” with no leading zeros. The index value of “n ” corresponds
directly to the ordinal number of previous sessions (i.e. “1” is the value
for the first AU session, “2” is the second AU session, etc.)

Value Format

Data type
Examples | esson_status.1 = Inconplete
LESSON_STATUS. 2 = Passed, L
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_data.lesson_status.n

APl & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_data.lesson_status.n” - case sensitive where n is the (zero-
based) array index. The index value of “n ” corresponds to the ordinal
number of previous sessions minus 1. (i.e. “0” is the value for the first
AU session, “1” is the second AU session, etc.)

Value Format See2.1.6 Core.Lesson Status
Data type See2.1.6 Core.Lesson Status
Examples var session2status = LMSGetValue(“cmi.student data.lesson_status.1”)

August-16-2004

69 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.10 Student Preference

Data Element Name

Student Preference

Definition

A grouping for a variety of data elements relating to preferences that a
given student user has set for a given course.

Usage All data elements in this group are set by the AU (by some user
interface in the AU presented the student user to pick the course
preferences).

For a given student, all data elements in this group are shared

with all of other AU’s in a given course. So a student may set a
preference data element (such as Student Preference.Audio) in

one AU and that preference value will persist (throughout the
course) until changed by the student in subsequent AU’s/AU
sessions.

To provide this persistence, the CMI must store/update the data
elements in this group at the end of each AU session and pass
them to any other AU in a given course (for a given student).

This data is retained for the duration of the student’s enrollment

in a course.

Some data elements in this group do not have controlled vocabularies,
so some preferences set by one AU may not “translate” among AU’s
from different designers. Regardless, the values for preferences still
persist until changed (even if some AU’s do not understand them).
All data elements in this category are optional. (See individual
member data elements for obligations).

Membership
Student Preference.Audio
Student Preference.Language
Student Preference.Lesson Type
Student Preference.Speed
Student Preference.Text
Student Preference.Text Color
Student Preference.Text Location
Student Preference.Text Size
Student Preference.Video
Student Preference.Windows

2.10.1 Student Preference.Audio

Data Element Name

Student Preference.Audio

Definition

This element determines the student preference for playing audio and
audio volume during AU presentations.

Usage

The possible states for this element are as follows:

On — Play audio at the indicated volume (an integer value of 1 to
100. 1 being the lowest volume, 100 being the highest)

August-16-2004

70 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Audio

Off — No audio is played (an integer value of -1)

Default — Play audio based on AU’s internal defaults (an integer
value of 0). If no value is available (or this element is not
supported) and AU should assume “0".

CMI Behavior Notes

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Audio

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Audio” - case insensitive

Value Format

An integer value from -1 to 100. Values are as follows:

-1 : Off — No audio is played
0 . Default — Play audio based on AU’s internal defaults
1to 100 : On - Play audio at the indicated volume. (unsigned)
Data type CMISinteger
Examples ; Audio is off
Audio = -1
; Audio is set to maxi mum possi ble vol une
Audi o = 100
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations PutParam: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_preference.audio
API & Obligations LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_preference.audio” - case sensitive

Value Format

Same as File Binding

Data type CMISinteger
Examples var mc = LMSGetValue(“cmi.student preference.audio”)
[* set audio off */
LMSSetValue(“cmi.student_preference.audio”,™1")
/* set audio on and at half volume*/
LMSSetValue(“cmi.student_preference.audio”,”50”)
2.10.2 Student Preference.Language

Data Element Name

Student Preference.Language

Definition

For AU’s with multi-lingual capability, this element identifies which

August-16-2004

71 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Language

language should be used to deliver instruction based on the student’s
selected preference.

Usage

This element can be set (by the AU) to any string that represents a
language. There is no preset vocabulary for language values. If a
Student Preference.Language value is not recognized by the AU, it
should then use its own internal default for language delivery.

Because of there is no preset vocabulary for Student
Preference.Language values, this element is AU implementation
specific. AU’s from different designers in the same course may not be
able to interpret language values.

CMI Behavior Notes

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Language

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Language” - case insensitive

Value Format

A 255 character string representing a language. (See Datatype
CMIString255INI for details)

Data type CMIString255INI
Examples Language = French
Language = English
Language = Chinese
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_preference.language
API & Obligations LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student preference.language” - case sensitive

Value Format

Same as File Binding

Data type CMIString255INI
Examples var lang = LMSGetValue(“cmi.student_preference.language”)
LMSSetValue(“cmi.student_preference.language”)”,”French”)
2.10.3 Student Preference.Lesson Type

| Data Element Name

Student Preference.Lesson Type

August-16-2004

72 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Lesson Type

Definition

This data element specifies the (AU designer specific) “type” of AU that
made the last updates to other Student Preference data elements.

The purpose for this element is to communicate to other AU’s which
“type” of AU updated the Student Preference data elements last, since
some Student Preference data elements set in one type of AU may be
meaningless when applied to another type of AU. The reason for this
limitation is that some Student Preference data elements in this
specification are not defined with controlled vocabularies. These
(implementation specific) Student Preference data elements are as
follows:

Student Preference.Language

Student Preference.Text Color

Student Preference.Text Location

Student Preference.Text Size

Student Preference.Video

Student Preference.Windows

Usage

This element is set by the AU when changing the values of any of the
following Student Preference data elements:

Student Preference.Language
Student Preference.Text Color
Student Preference.Text Location
Student Preference.Text Size
Student Preference.Video
Student Preference.Windows

The CMI passes this element to all AU’s in a course. After the value for
this element is updated by a given AU, the CMI passes the new value to
all subsequent AU’s and AU sessions for a given student in a given
course.

This value for this data element is AU designer specific.

CMI Behavior Notes

AU Behavior Notes

A designer creating large numbers of AU’s should make them as
homogenous as possible with regards to use of Student Preference data
elements (i.e. use the same Student Preference.Lesson Type whenever
possible)

File Binding

Name

Lesson_Type

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Lesson_Type” - case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI
Examples Lesson_Type = Airbus-A320-Adopt-PPT
Lesson_Type = Boeing-777-Authorware-5
Lesson_Type = NWA-Flash-Flight
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations PutParam: CMI Optional, AU Optional
August-16-2004 73 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Lesson Type

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_preference.lesson_type

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_preference.lesson_type” - case sensitive

Value Format

Same as File Binding

Data type CMIString255INI
Examples var Lessontype = LMSGetValue(“cmi.student_preference.lesson_type”)
LMSSetValue(“cmi.student_preference.lesson_type”)”,” Airbus -A320-Adopt-PPT")
2.104 Student Preference.Speed

Data Element Name

Student Preference.Speed

Definition

The student’s preferred playback speed for AU materials.

Usage

The allowed values for this element is an integer number from -100 to
100 where:

The value of 100" is slowest playback speed. The AU plays
back at the slowest speed possible,

The value of “0” is a “no-change status”. The AU defaults to its
normal playback speed.

The value of “100” is the fastest playback speed. The AU plays
back at the fastest speed possible,

CMI Behavior Notes

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Speed

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Speed’ - case insensitive

Value Format

An integer value from —100 to 100. Values are as follows:
-1to -100 : Slower speeds

0 : Default — Speed based on AU’s internal defaults
1to 100 : Faster speeds
Data type CMISinteger
Examples ; Speed is set to slowest possible pace
Speed = -100
; Speed is set to fasted possible pace
Speed = 100
HACP Binding
Name Same as File Binding

August-16-2004

74 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Speed

HACP Message(s)
& Obligations

GetParam (response): CMI Optional, AU Optional
PutParam: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student preference.speed

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_preference.speed” - case sensitive

Value Format

Same as File Binding

Data type CMISinteger
Examples var mc = LMSGetValue(“cmi.student_preference.speed”)
LMSSetValue(“cmi.student_preference.speed”,™1")
LMSSetValue(“cmi.student preference.speed”,”50")
2.10.5 Student Preference.Text

Data Element Name

Student Preference.Text

Definition

This element identifies whether the audio narration text appears in the
AU’s presentation.

Usage

This element is an integer with 3 possible values (-1, 0, and 1) where
these values have the following meaning:

-1 Is text off. Narration text is not displayed by the AU
0 Is no change to text setting, the AU uses its default value.

1 Istext on. The AU displays narration text to the student

CMI Behavior Notes

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Text

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Text” - case insensitive

Value Format

An integer with 3 possible values (-1, 0, and 1) see usage

Data type CMISinteger
Examples Text = -1
Text =1
HACP Binding
Name Same as File Binding

August-16-2004

75 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Text

HACP Message(s)
& Obligations

GetParam (response):
PutParam:

CMI Optional, AU Optional
CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_preference.text

API & Obligations

LMSGetValue():
LMSSetValue():

CMI Optional, AU Optional
CMI Optional, AU Optional

Name Format

“cmi.student_preference.text” - case sensitive

Value Format

Same as File Binding

Data type CMISinteger
Examples var textpref = LMSGetValue(“cmi.student_preference.text”)
LMSSetValue(“cmi.student_preference.text”,”1")
LMSSetValue(“cmi.student_preference.text”,”0")
2.10.6 Student Preference.Text Color

Data Element Name

Student Preference.Text Color

Definition

This element stores student preferences for text color and text
background in the AU presentation.

Usage

Format of data in this element is AU implementation specific.

CMI Behavior Notes

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Text_Color

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Text_Color” - case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI
Examples Text _Col or = R23, B34, 465
Text _Col or =
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations PutParam: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding

API Binding

August-16-2004

76 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Text Color

Name

cmi.student_preference.text_color

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_preference.text_color” - case sensitive

Value Format

Same as File Binding

Data type

CMIString255INI

Examples

var textcolorpref = LMSGetValue(“cmi.student_preference.text_color”)

”

LMSSetValue(“cmi.student_preference.text color”,’green”)

LMSSetValue(“‘cmi.student preference.text color”,”blue”)

2.10.7 Student Preference.Text Location

Data Element Name

Student Preference.Text Location

Definition

This element stores student preferences for location of narration text in
the AU presentation.

Usage

Format of data in this element is AU implementation specific.

CMI Behavior Notes

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Text Location

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Text_Location” — case insensitive

Value Format

255 Character String

Data type CMIString255INI
Examples Text _Location = Lower-right
Text _Location = 123, 240
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations PutParam: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_preference.text_location

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_preference.text_location” - case sensitive

Value Format

Same as File Binding

Data type

CMIString255INI

Examples

August-16-2004

var textcolorpref = LMSGetValue(“cmi.student_preference.text_location”)

LMSSetValue(“cmi.student_preference.text_location”,”lower-right”)

77 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Text Location

| LMSSetValue(“cmi.student_preference.text_location”,"234,56")

2.10.8 Student Preference.Text Size

Data Element Name

Student Preference.Text Size

Definition

This element stores student preferences for the size of displayed text in
the AU presentation.

Usage

Format of data in this element is AU implementation specific.

CMI Behavior Notes

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Text Size

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Text_Size" — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI
Examples Text Size = 124%
Text _Size = Large
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations PutParam: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_preference.text size

API & Obligations

LMSGetValue():
LMSSetValue():

CMI Optional, AU Optional
CMI Optional, AU Optional

Name Format

“cmi.student_preference.text_size” - case sensitive

Value Format

Same as File Binding

Data type

CMIString255INI

Examples

var textcolorpref = LMSGetValue(“cmi.student_preference.text_size”)

LMSSetValue(“cmi.student_preference.text_size”,"124%")

LMSSetValue(“cmi.student_preference.text_size”,"Large”)

2.10.9 Student Preference.Video

Data Element Name

Student Preference.Text Video

Definition

This element stores student preferences for display/control properties for
video presented in the AU.

Usage

Format of data in this element is AU implementation specific.

CMI Behavior Notes

August-16-2004

78 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Text Video

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Video

Files & Obligation

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Video” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI
Examples Video = 124, 56 — controls on
Vi deo = nornal size
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations PutParam: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_preference.video

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_preference.video” - case sensitive

Value Format

Same as File Binding

Data type

CMIString255INI

Examples

var textcolorpref = LMSGetValue(“cmi.student_preference.video”)

LMSSetValue(“cmi.student_preference.video”,”124, 56 — controls on”)

LMSSetValue(“cmi.student_preference.video”,’normal size”)

2.10.10 Student Preference.Windows

Data Element Name

Student Preference.Windows

Definition

This element stores student preferences for display properties of
presentation window(s) used by the AU. This element is an array. Each
array record represents properties for a single display window. There is
only a single value per record.

Usage

An AU may use multiple display windows. Format of data in this
element is AU implementation specific.

CMI Behavior Notes

AU Behavior Notes

This data element is set by the AU, usually by some user interface in the
AU that presents the student with user selectable preference options. It
is recommended that the AU does not change this element without
student prompting.

File Binding

Name

Window.1

August-16-2004

79 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Preference.Windows

Files & Obligations

Startup: CMI Optional, AU Optional
Finish: CMI Optional, AU Optional

Name Format

“Window.n” — case insensitive where n is the array index.

Value Format

255 Character String. Format of data is AU implementation specific.
(See Datatype CMIString255INI for details)

Data type CMIString255INI
Examples W ndow. 2 = 124, 56 — controls on
wi ndow. 1 = nornmal size
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations PutParam: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name cmi.student_preference.windows.n
API & Obligations LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_preference.windows.n” - case sensitive where n is the
(zero-based) array index.

Value Format

Same as File Binding

Data type

CMIString255INI

Examples

var textcolorpref = LMSGetValue(“cmi.student_preference.windows.0”)

LMSSetValue(“cmi.student_preference.widnows.2","124, 56 — controls on”)

LMSSetValue(“cmi.student_preference.windows.3”,"normal size”)

August-16-2004

80 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.11 Interactions

Data Element Name

Interactions

Definition

In this context, an “interaction” is a recognized and recordable
input from the student to the computer. All of the items in this
group are related to a recognized and recordable input from the
student. The purpose of the element is to collect detailed
information on each interaction measured in an AU session.

This element is an array. Each record in this array corresponds
to a single interaction in the current AU session. Each record is
made up of the following sub-elements:

Interactions.ID

Interactions.Objectives

Interactions.Date

Interactions.Time

Interactions.Type

Interactions.Correct Responses

Interactions.Weighting

Interactions.Student Response

Interactions.Result

Interactions.Latency

Each array record sub-element is described individually in this section

Usage

The AU sets all data elements in this group. The CMI stores and
retains this data for reporting purposes.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

2.11.1 Interactions.ID

Data Element Name

Interactions.ID

Definition

A developer defined, unique identifier for a specific “interaction” within an
AU.

Usage

This element is internally determined and is set by the AU.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Interaction_ID

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Not applicable

Value Format

See data type CMlldentifierDevID for format description.

While the CMIlIdentifierDevID data format is valid, it is recommended
that data type CMIldentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMlldentifierDevID.

Data type

CMilldentifierDevID

Examples

“Int-Eng-Start-1"

“XYZ-1230-122"

August-16-2004

81 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Interactions.ID

HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding

API Binding
Name “cmi.interactions.n.id”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Obligation

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.interactions.n.id” — case sensitive where n is the (zero-based) array
index

Value Format

Same as File Binding

Data type Same as File Binding
Examples LMSSetValue(“cmi.objectives.2.id”, “int-Eng-Start-1")
var inter_var = LMSGetValue(“cmi.interactions.2.id”)
2.11.2 Interactions.Objectives

Data Element Name

Interactions.Objectives

Definition

The identifier(s) of the objectives associated with the Interactions record.

Usage

This element is internally determined and set by the AU. The objective
ID’s used must match those associated with objectives in the course
structure.

In the API binding, this element is an array and can contain multiple
objective ID’s associated with the Interactions record.

For HACP and File bindings there can only be a single objective ID in
this element.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Objective_ID

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Objective_ID” case insensitve

Value Format

See data type CMlIndentifierDevID for description

While the CMIIdentifierDevID data format is valid, it is recommended
that data type CMIldentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMlldentifierDevID.

Data type

CMIlIdentifierDevID.

Examples

“Int-Eng-Start-1"

“XYZ-1230-122"

August-16-2004

82 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Interactions.Objectives

HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.interactions.n.id.objectives.n.id”

API & Obligations

LMSGetValue():
LMSSetValue():

CMI Optional, AU Optional
CMI Optional, AU Optional

Name Format

“cmi.interactions.n.id.objectives.nl.id”

case sensitive where n is the (zero-based) array index for the interaction
record and n1l is the sub (zero-based) array index for the objectives
associated with the interaction record,

Value Format

Same as File Binding

Data type CMlldentifierDevID (for each element)
Examples LMSSetValue(“cmi.interactions.2.id.objectives.1.id”, “int-Eng-Start-1")
var iObj_var = LMSGetValue(“cmi.interactions.3.id.objectives.2.id")
2.11.3 Interactions.Date

Data Element Name

Interactions.Date

Definition

The calendar day on which the Interactions array record was recorded
by the AU.

Usage

This element is set by the AU.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Date

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Date” case insensitve

Value Format

See description of data type CMIDate

Data type CMIDate
Examples “1999/03/22"
“2001/09/11”
HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

Same as File Binding

Same as File Binding

August-16-2004

83 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Interactions.Date

API Binding
Name “cmi.interactions.n.date”
API & Obligations LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.interactions.n.date”

case sensitive where n is the (zero-based) array index for the interaction
record

Value Format

See description of data type CMIDate

Data type CMIDate
Examples LMSSetValue(“cmi.interactions.2.date”, “2002/05/23")
var iObj_var = LMSGetValue(“cmi.interactions.3.date”)
2.11.4 Interactions.Time
Data Element Name Interactions.Time
Definition The time of day on which the Interactions array record was recorded by
the AU.
Usage This element is set by the AU.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Interactions Time

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Time” case insensitve

Value Format

See description of data type CMITime

Data type CMITime
Examples “12:01:02”
“13:05:56.23"
HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.interactions.n.time”

APl & Obligations

LMSGetValue():
LMSSetValue():

CMI Optional, AU Optional
CMI Optional, AU Optional

Name Format

“cmi.interactions.n.time”

case sensitive where n is the (zero-based) array index for the interaction
record.

Value Format

Same as File Binding

Data type

Same as File Binding

August-16-2004

84 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name Interactions.Time

Examples LMSSetValue(“‘cmi.interactions.2.time”, “12:01:03")

var iTime_var = LMSGetValue(“cmi.interactions.3.time”")

August-16-2004 85 CMI001 Version 4.0

2.11.5 Interactions.

AICC - CMI Guidelines for Interoperability

Type

Data Element Name

Interactions.Type

Definition

The “type” of interaction that was recorded. The type of interaction
determines how the Interactions.Student Response and
Interactions.Correct Response will be interpreted.

Usage

The AU sets this element. The seven possible values are defined.

True/False
A gquestion with only two possible responses (true or false). There is only
one possible correct response for this type of interaction.

Multiple Choice

A question with a limited number of predefined responses from which
the student may select. Each response is numbered or lettered. One or
more responses may be correct for this type of interaction.

Fill in the Blank

A question with a simple one or few-word answer. The answer/response
is not predefined, but must be created by the student (as opposed to
selected). There is only one possible correct response for this type of
interaction.

Matching

A question with one or two sets (or lists) of items. Two or more of the
members of these sets are related. Answering the question requires
finding and matching related members in different sets (or lists). One or
more responses may be correct for this type of interaction.

Simple Performance

A performance question is in some ways similar to multiple choice and
sequencing questions. However, instead of selecting a written answer,
the student must perform a task or action. This step in the task or action
when input to the computer may have two parts. They are translated
and stored as an alpha-numeric codes or tokens. One or more
responses may be correct for this type of interaction.

Sequencing

In a sequencing question, the student is required to identify a logical
order for the members of a set or list. For instance, he or she may be
asked to place a series of events in chronological order. Or the student
may be asked to rank a group of items by the order of their importance.
One or more responses may be correct for this type of interaction.

Likert
A Likert question offers the student a group of alternatives on a
continuum. The response is generally based on the student's opinion or
attitude. Typical scales are as follows:

FROM Strongly agree TO Strongly disagree

August-16-2004

86 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Interactions.Type

FROM Way too much TO Way too little

FROM Understand completely TO Do not understand at all
There is no “correct answer” for likert type interactions. There is only one
response.

Numeric

A numeric value with or without a decimal point is required in answering
the question. The correct answer may be a single number within a
range of numbers.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Type_Interaction

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Type_Interaction” case insensitve

Value Format

See description of data type CMIVocabularyINI:Interaction

Data type CMIVocabularyINI:Interaction
Examples “Likert”
Ve
“Fill-in”
HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.interactions.n.type”
API & Obligations LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

Case sensitive where n is the (zero-based) array index for the
Interactions record:
“cmi.interactions.n.type”

Value Format

See description of data type CMIVocabularyINI:Interaction

Data type CMIVocabularyINI:Interaction
Examples LMSSetValue(“‘cmi.interactions.2.type”, “likert”)
var iType_var = LMSGetValue(“cmi.interactions.3.type”)
2.11.6 Interactions.Correct Responses

Data Element Name

Interactions.Correct Responses

Definition

All possible correct responses to the interaction. There may be more
than one correct response depending upon the interaction “type”.

Usage

The AU sets this element. The format of this element is determined by
type indicated in Interactions.Type. (See Interactions Type for Type
definitions)

August-16-2004

87 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Interactions.Correct Responses

Type Likert has no “correct response”. The element is left blank for
interactions of type “Likert”.
The following types can have multiple possible correct responses:
Multiple Choice
Matching
The following types can have only one possible correct response:
Fill in the Blank
Simple Performance
Sequencing
Numeric

In the API binding, this element is an array with one record for each

possible correct response. For HACP and File bindings this element is a

single value with delimiters for multiple correct responses.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Correct_Response

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Correct_Response” case insensitive

Value Format

See data type CMIFeedbackCSV sub types for description of correct
formats based on interaction type.

Data type CMIFeedbackCSV
Examples “Likert”
N
“Fill-in”
HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.interactions.n.correct_reponses.n.pattern”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

Case sensitive where n is the (zero-based) array index for the
Interactions record and n1 is the index for the correct response(s):
“cmi.interactions.n.correct_reponses.nl.pattern”

Value Format

See data type CMIFeedbackCSV sub types for description of correct
formats based on interaction type.

Data type

CMIFeedbackCSV

Examples

LMSSetValue(“cmi.interactions.2.correct_reponses.1.pattern”, “{1.b,2.c}")

Corl = LMSGetValue(“cmi.interactions.3.correct_reponses.1.pattern”)

August-16-2004

88 CMI001 Version 4.0

2.11.7 Interactions.

AICC - CMI Guidelines for Interoperability

Weighting

Data Element Name

Interactions.Weighting

Definition

The weighted value of the interaction. The weighting is a factor, which is
used to identify the relative importance of one interaction compared to
another.

Usage

The AU sets this element. If all interactions are equal in importance,
then each interaction has the same weight.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

An AU’s weighting of interactions may reflect their impact on the score
for an AU session. A weight of O indicates that the AU may not count
the interaction in the weighted final score.

File Binding

Name

Weighting

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Weighting” case insensitive

Value Format

See data type CMIDecimal.

Data type CMIDecimal
Examples 1
2.5
3
HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.interactions.n.weighting”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

Case sensitive where n is the (zero-based) array index for the
Interactions record:
“cmi.interactions.n.weighting”

Value Format

Same as File Binding

Data type Same as File Binding
Examples LMSSetValue(“cmi.interactions.2.weighting”, “2”")
Weightl = LMSGetValue(“cmi.interactions.3. weighting”)
2.11.8 Interactions.Student Response

Data Element Name

Interactions.Student Response

Definition

The student user response to the interaction.

Usage

The AU sets this element. The format of this element is determined by
type indicated in Interactions.Type. (See Interactions Type for Type
definitions)

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

August-16-2004

89 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Interactions.Student Response

File Binding

Name

Student_Response

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Student_Response” case insensitive

Value Format

See data type CMIFeedbackCSV sub types for description of correct
formats based on interaction type.

Data type CMIFeedbackCSV

Examples “{1.a,2.b,3.c}y”
“2.a" -
e
“This is a response to a fill-in-the-blank question”
34

HACP Binding
Name Same as File Binding

HACP Message(s)

& Obligations

Putinteractions: CMI Optional, AU Optional

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.interactions.n.student_reponse”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

Case sensitive where n is the (zero-based) array index for the
Interactions record:
“cmi.interactions.n.student_reponse”

Value Format

See data type CMIFeedbackCSV sub types for description of correct
formats based on interaction type.

Data type CMIFeedbackCSV
Examples LMSSetValue(“cmi.interactions.2.student_reponse.1”, “{1.b,2.c}")
StudRespl = LMSGetValue(“cmi.interactions.3. student_reponse”)
2.11.9 Interactions.Result

Data Element Name

Interactions.Result

Definition

Judgment of the acceptability of the student response in the interaction.

Usage

The AU sets this element.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Result

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Result” case insensitive

Value Format

See data type CMIVocabularyINI:Result for description of data
formating.

Data type

CMIVocabularyINI:Result

August-16-2004

0 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Interactions.Result

Examples “C”
“‘wrong”
“Unanticipated”
HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.interactions.n.result”

API & Obligations

LMSGetValue():
LMSSetValue():

CMI Optional, AU Optional
CMI Optional, AU Optional

Name Format

Case sensitive where n is the (zero-based) array index for the

Interactions record:
“cmi.interactions.n.result”

Value Format

See data type CMIVocabularyINI:Result for description of data

formating.
Data type CMIVocabulary:Result
Examples LMSSetValue(“cmi.interactions.2.result”, “correct”)
resl = LMSGetValue(“cmi.interactions.3. result”)
2.11.10 Interactions.Latency

Data Element Name

Interactions.Latency

Definition

The time from the presentation of the Interaction stimulus to the

completion of the measurable response in the AU.

Usage

The AU sets this element.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Latency

Files & Obligations

Interactions File: CMI Optional, AU Optional

Name Format

Field Name: “Latency” case insensitive

Value Format

See data type CMITimespan for description.

Data type CMITimespan
Examples “00:00:03”
“00:01:03.50"
“0000:03:03.1"
HACP Binding
Name Same as File Binding
HACP Message(s) Putinteractions: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

August-16-2004

91

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Interactions.Latency

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.interactions.n.latency”

API & Obligations

LMSGetValue():
LMSSetValue():

CMI Optional, AU Optional
CMI Optional, AU Optional

Name Format

Case sensitive where n is the (zero-based) array index for the
Interactions record:
“cmi.interactions.n.latency”

Value Format

Same as File Binding

Data type Same as File Binding
Examples LMSSetValue(“cmi.interactions.2.latency”, “0000:45:02.22")
resl = LMSGetValue(“cmi.interactions.3. latency”)
2.12 Paths

Data Element Name

Paths

Definition

A record of the path that the student took through an AU’s material
during an AU session.

This data element allows the AU to record the AU segments entered by
the student, the order in which the student experienced the segments,
and the time spent in each segment (during an AU session). The
number of segments in an AU is implementation dependent.

This element is an array. Each record in this array corresponds
to a single path taken in the current AU session. Each record is
made up of the following sub-elements:

Paths.Location 1D

Paths.Date

Paths.Time

Paths.Status

Paths.Why Left

Paths.Time in Element

Each array record sub-element is described individually in this section

Usage

The AU sets all data elements in this group.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

2121

Paths.Location ID

Data Element Name

Paths.Location ID

Definition

A developer defined, unique identifier for a specific location within the
AU visited by the student during an AU session.

Usage

The AU sets this element.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Element_Location

August-16-2004

R CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Paths.Location ID

Files & Obligations

Path File: CMI Optional, AU Optional

Name Format

Field Name: “Element Location” case insensitive

Value Format

See data type CMlldentifierINI for description.

Data type CMlldentifierINI
Examples “Int-Eng-Start-1"
“XYZ-1230-122"
HACP Binding
Name Same as File Binding
HACP Message(s) PutPath: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.paths.n.location_id”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.paths.n.location_id” — case sensitive where n is the (zero-based)
array index

Value Format

See data type CMIlldentifierINI for description.

Data type CMlldentifierINI
Examples LMSSetValue(“cmi.paths.2.location_id”, “int-Eng-Start-1")
var log_path = LMSGetValue(“cmi.paths.2.location_id")
2.12.2 Paths.Date

Data Element Name

Paths.Date

Definition

The calendar day on which the AU segment was entered.

Usage

The AU sets this element.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Path Date

Files & Obligations

Path File: CMI Optional, AU Optional

Name Format

Field Name: “Date” case insensitive

Value Format

See description of data type CMIDate

Data type CMIDate
Examples “1999/03/22"
“2001/09/11”
HACP Binding
Name Same as File Binding
HACP Message(s) PutPath: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

August-16-2004

a3 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Paths.Date

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.paths.n.date”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.paths.n.date”

case sensitive where n is the (zero-based) array index for the Path
record.

Value Format

See description of data type CMIIDate

Data type CMIDate
Examples LMSSetValue(“‘cmi.paths.2.date”, “2002/05/23")
var pdate = LMSGetValue(“cmi.paths.3.date”)
2.12.3 Paths.Time

Data Element Name

Paths.Time

Definition

The time of day at which the student entered the AU segment.

Usage

The AU sets this element.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Path Time

Files & Obligations

Path File: CMI Optional, AU Optional

Name Format

Field Name: “Time” case insensitive

Value Format

See description of data type CMIDate

Data type CMITime
Examples “12:01:23.33"”
“14:05:43"
HACP Binding
Name Same as File Binding
HACP Message(s) PutPath: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.paths.n.time”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.paths.n.time” - case sensitive where n is the (zero-based) array
index for the Paths record.

Value Format

Same as File Binding

Data type

Same as File Binding

August-16-2004

o] CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Paths.Time

Examples

LMSSetValue(“cmi.paths.2.time”, “13:03:45.45")

var ptime = LMSGetValue(“cmi.paths.3.time”")

2.12.4 Paths.Status

Data Element Name

Paths.Status

Definition

A record of the student's performance in an AU segment each time
he/she leaves that segment during an AU session.

Usage Only the AU sets the value of Paths.Status. There are four possible
values:
passed: The student mastered the AU segment.
completed: The student has visited all parts of the segment
failed: The student experienced some kind of assessment within the
AU segment but did not demonstrate mastery.
incomplete: The AU segment was started but not finished.
CMI Behavior
AU Behavior
File Binding
Name Status

Files & Obligations

Path File: CMI Optional, Finish: AU Optional

Name Format

Field Name: “Status” case insensitive

Value Format

One of the following vocabulary values: “passed” , “failed”, “complete”,
“incomplete”, “not attempted”. All values are case insensitive. Only the
first character is significant.

Data type CMIVocabularyINI:Status
Examples “Passed”
“C”
“FH
HACP Binding
Name Same as File Binding
HACP Message(s) PutPath : CMI Optional, AU optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding

Examples Same as File Binding
API Binding

Name cmi.paths.n.status

API & Obligations

LMSGetValue() : CMI Optional, AU optional
LMSSetValue() : CMI Optional, AU optional

Name Format

“cmi.paths.n.status” - case sensitive where n is the (zero-based) array
index.

Value Format

A specific vocabulary limited to on of the following values: “passed”,
“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”. All
values are case sensitive

Data type

CMIVocabulary:Status

Examples

August-16-2004

var stats = LMSGetValue(“cmi.paths.5.status”)

95 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Paths.Status

LMSSetValue(“cmi.paths.8.status”, “passed”)

2.12.5 Paths.Why Left

Data Element Name

Paths.Why Left

Definition

An indication why the student departed a segment in an AU.

Usage

The AU sets this element. There are four possible values that may be
recorded:

Student selected: The student selected some AU option, which
resulted in his leaving the current AU segment. (Typically a menu, icon
or some other kind of navigation control)

Lesson directed: The logic of the AU moved a student out of the
current AU segment to some other segment in the AU.

Exit by student: A complete departure from the AU. For instance the
student may have selected to log out or exit the AU.

Directed departure: The AU forced the student out of the current
session. An example might occur when the time limit is exceeded.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Why Left

Files & Obligations

Path File: CMI Optional, AU Optional

Name Format

Field Name: “Why_Left” case insensitive

Value Format

See description of data type CMIVocabularyINI:Why Left

Data type CMIVocabularyINI:Why Left
Examples “S”
“exit”
“directed departure”
HACP Binding
Name Same as File Binding
HACP Message(s) PutPath: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding

API Binding
Name “cmi.paths.n.why _left

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.paths.n.why_left” - case sensitive where n is the (zero-based) array
index for the Paths record.

Value Format

See description of data type CMIVocabulary:Why Left

Data type

CMIVocabulary:Why Left

Examples
August-16-2004

| LMSSetValue(“cmi.paths.2.why_left”, “directed departure”)

96 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Paths.Why Left

| var whyLeft = LMSGetValue(“cmi.paths.3.why_left”)

2.12.6 Paths.Time in Element

Data Element Name

Paths.Time in Element

Definition

The amount of time spent by the student in the AU segment.

Usage

The AU sets this element.

CMI Behavior Notes

The CMI stores and retains this data for reporting purposes.

AU Behavior Notes

File Binding

Name

Time_In_Element

Files & Obligations

Path File: CMI Optional, AU Optional

Name Format

Field Name: “Time_In_Element” case insensitive

Value Format

See description of data type CMIDate

Data type CMITimespan
Examples “12:01:23.33"
“0014:05:43"
HACP Binding
Name Same as File Binding
HACP Message(s) PutPath: CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.paths.n.time_in_element”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.paths.n.time_in_element” - case sensitive where n is the (zero-
based) array index for the Paths record.

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

LMSSetValue(“cmi.paths.2.time_in_element”, “13:03:45.45")

var ptime = LMSGetValue(“cmi.paths.3.time_in_element”)

August-16-2004

97 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.13 Student Demographics

Data Element Name

Student Demographics

Definition

A grouping for a variety of data elements relating to demographic
information about the student user.

Usage All data elements in this category are optional. (See individual
member data elements for obligations)
Membership Student Demographics.City

Student Demographics.Class

Student Demographics.Company
Student Demographics.Country

Student Demographics.Experience
Student Demographics.Familiar Name
Student Demographics.Instructor Name
Student Demographics.Native Language
Student Demographics.State

Student Demographics.Street Address
Student Demographics.Telephone
Student Demographics.Title

Student Demographics.Years Experience

2.13.1 Student Demographics.City

Data Element Name

Student Demographics.City

Definition

A Portion of student's current address that denotes the city.

Usage

The CMI sets this element.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

City

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“City” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI
Examples City = Toul ouse
City = Seattle
City = Montreal
City = St. Louis
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding

API Binding

August-16-2004

98 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Demographics.City

Name

“cmi.student_demographics.city”

APl &
OBLIGATIONS

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.city” - case sensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.city”, “Toulouse”)

var city = LMSGetValue(“cmi.student_demographics.city”)

2.13.2 Student Demographics.Class

Data Element Name

Student Demographics.Class

Definition

An identifier for a predefined group of students, which are all, enrolled in
the same course (of which the current AU is a member).

Usage

This grouping (class) is determined by the CMI and is implementation
dependent. The CMI sets this element. Format is implementation
dependent.

CMI Behavior Notes

The CMI may have a “class” of students that is enrolled in multiple
courses.

AU Behavior Notes

File Binding

Name

Class

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Class” — case insensitive

Value Format

See description for data type CMIlldentifierINI

Data type CMlldentifierINI
Examples Class = FSL-737-200-Rdnl
Cl ass = NWA- A330- 1204
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.class”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.class” - case sensitive

Value Format

See description for data type CMIIdentifierINI

Data type

CMilldentifierINI

Examples

LMSSetValue(“cmi.student_demographics.class”, “FSL-737-200-Rdn1")

var class = LMSGetValue(“cmi.student_demographics.class”)

August-16-2004

9 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.13.3 Student Demographics.Company

Data Element Name

Student Demographics.Company

Definition

The company or organization that the student is an employee and/or
member of.

Usage

The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

Company

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Company” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI

Examples Conmpany = Airbus
Company = Northwest Airlines
Conmpany = Alteon

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response): CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.company”
API & Obligations LMSGetValue(): CMI Optional, AU Optional
LMSSetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.company” - case sensitive

Value Format

255 Character String

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.company”, “Northwest Airlines”)

var company = LMSGetValue(“cmi.student_demographics.company”)

2.13.4 Student Demographics.Country

Data Element Name

Student Demographics.Country

Definition

A Portion of student's current address that denotes the country.

Usage

The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

Country

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Country” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

August-16-2004

100

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Demographics.Country

Data type CMIString255INI
Examples Country = Canada
Country = France
Country = United Kingdom
Country = United States
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.country”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.country” - case sensitive

Value Format

255 Character String

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.country”, “France”)

var country = LMSGetValue(“cmi.student_demographic.country”)

2.13.5 Student Demographics.Experience

Data Element Name

Student Demographics.Experience

Definition

Information on the student's past experience that may be used by an AU
to determine what to present, or what presentation strategies to use.

Usage

The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

Experience

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Experience” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI

Examples Experience = 737-700 Type Rating
Experience = 5 Years Avionics 737,767
Experience = Type Rating - A330/ A340
Experience = A/P only

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response): CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

August-16-2004

101 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Demographics.Experience

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.experience”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.experience” - case sensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.experience”, “France”)

var country = LMSGetValue(“cmi.student_demographic.experience”)

2.13.6 Student Demographics.Familiar Name

Data Element Name

Student Demographics.Familiar Name

Definition

In some cases, an AU may attempt to be more personal by using a
student's name in its feedback. This provides a mechanism for the CMI
system to inform the AU how it should refer to the student.

Usage

The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

Familiar Name

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Familiar_ Name” — case insensitive

Value Format

255 Character String

Data type CMIString255INI

Examples Familiar_Name = Ski p W nger
Familiar_Name = Chip
Familiar_Name = Jacques

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response): CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.familiar_name”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.familiar_ name™ - case sensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

August-16-2004

102 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name Student Demographics.Familiar Name

Data type CMIString255INI

Examples LMSSetValue(“cmi.student_demographics.familiar_name”, “Jacques”)

var country = LMSGetValue(“cmi.student_demographic.familiar_name™)

2.13.7 Student Demographics.Instructor Name

Data Element Name Student Demographics.Instructor Name

Definition Name of the instructor responsible for the student's understanding of the
material in the AU.
Usage The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes ~ The CMI passes this data to the AU based on student user profile

information stored in the CMI.

AU Behavior Notes

File Binding

Name Instructor Name

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Instructor Name” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI

Examples Instructor_Name = Jack Hyde
Instructor_Name = Jean- Francoi s Schm dt
Instructor_Name = Xavi er Zei gl er

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response): CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.instructor_name”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.instructor name” - case sensitive

Value Format

255 Character String

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.instructor_name”, “Xavi er Zei gl er ")

var instrName = LMSGetValue(“cmi.student_demographic.instructor_name™’)

2.13.8 Student Demographics.Native Language

Data Element Name Student Demographics.Native Language

Definition The language with which the student is most familiar. This may not be
the preferred language for the instructional delivery.
Usage The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes The CMI passes this data to the AU based on student user profile

August-16-2004 103 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Demographics.Native Language

information stored in the CMI.

AU Behavior Notes

File Binding

Name

Native Language

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Native_Language” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI

Examples Nat i ve_Language = French
Nati ve_Language = Chi nese
Native_Language = English

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response): CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.native language”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.native language” - case sensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.native_language”, “Fr ench”)

var natlang = LMSGetValue(“cmi.student_demographics.native_language”)

2.13.9 Student Demographics.State

Data Element Name

Student Demographics.State

Definition

A Portion of student's current address that denotes the state, province,
or local region within the country.

Usage

The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

State

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“State” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type

CMIString255INI

Examples

August-16-2004

State = Quebec

State M ssouri

State Mani t oba

104 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Demographics.State

HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.state”
APl & LMSGetValue(): CMI Optional, AU Optional

OBLIGATIONS

Name Format

“cmi.student_demographics.state” - case sensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.state”, “Missouri”)

var state = LMSGetValue(“cmi.student_demographic.state”)

2.13.10 Student Demographics.Street Address

Data Element Name

Student Demographics.Street Address

Definition

A Portion of student's current address that denotes the street address.

Usage

The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

Street_Address

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Street_ Address” — case insensitive

Value Format

255 Character String

Data type CMIString255INI

Examples Street_Address = 1601 Pennsyl vani a Avenue
Street_Address = 1301 SW 16th Street
Street_Address = Mani t oba

HACP Binding

Name Same as File Binding

HACP Message(s) GetParam (response): CMI Optional, AU Optional

& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.street_address”

August-16-2004

105 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Demographics.Street Address

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.street_address” - case sensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.street_address”, “Missouri”)

var addr = LMSGetValue(“cmi.student_demographics.street_address”)

2.13.11 Student Demographics.Telephone

Data Element Name

Student Demographics.Telephone

Definition

The telephone number of a student. May include country codes or
extensions.

Usage

The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

Telephone

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Telephone” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI
Examples Tel ephone = 1-800-555-5555 ext 123
Tel ephone = +44 482 663622
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.telephone”

API & Obligations

LMSGetValue():
LMSSetValue():

CMI Optional, AU Optional
CMI Optional, AU Optional

Name Format

“cmi.student_demographics.telephone” - case sensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.telephone”, “+1-555-555-5555")

var tel = LMSGetValue(“cmi.student_demographics.telephone”)

2.13.12 Student Demographics.Title

| Data Element Name

Student Demographics.Title

August-16-2004

106 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Demographics.Title

Definition

The job title of the student.

Usage

The CMI sets this element. Format is implementation dependent.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

Job_Title

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Job_Title” — case insensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type CMIString255INI
Examples Job_Title = Pi | ot
JOB TITLE = First O ficer
HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.title”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.title” - case sensitive

Value Format

A 255 character string. (See Datatype CMIString255INI for details)

Data type

CMIString255INI

Examples

LMSSetValue(“cmi.student_demographics.title”, “First Officer”)

var title = LMSGetValue(“cmi.student_demographics.title”)

2.13.13 Student Demographics.Years Experience

Data Element Name

Student Demographics.Years Experience

Definition

Number of years the student has performed in current or similar position.

Usage

The CMI sets this element.

CMI Behavior Notes

The CMI passes this data to the AU based on student user profile
information stored in the CMI.

AU Behavior Notes

File Binding

Name

Years_Experience

Files & Obligations

Startup: CMI Optional, AU Optional

Name Format

“Years_Experience” — case insensitive

Value Format

Integer value O or higher

Data type

CMlinteger

Examples

August-16-2004

Years_Experience = 5

Years_Experience = 6

107 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Student Demographics.Years Experience

HACP Binding
Name Same as File Binding
HACP Message(s) GetParam (response): CMI Optional, AU Optional
& Obligations

Name Format

Same as File Binding

Value Format

Same as File Binding

Data type Same as File Binding
Examples Same as File Binding
Same as File Binding
API Binding
Name “cmi.student_demographics.years_experience”

API & Obligations

LMSGetValue(): CMI Optional, AU Optional

Name Format

“cmi.student_demographics.years_experience™ - case sensitive

Value Format

Same as File Binding

Data type

Same as File Binding

Examples

LMSSetValue(“cmi.student_demographics.years_experience”, “5”)

var yearsexp = LMSGetValue(“cmi.student_demographics.years_experience”,”)

August-16-2004

108 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

2.14 Lesson_ID

Data Element Name .Lesson ID

Definition The unique identifier for the Assignable Unit that the student user was
in when the comment was written. This is unique to, and inherent in
each AU. See Course Elements.Developer ID (section 3.4.2).

Usage The value for this element must set to the same value as the AU’s
Developer_ID (in the course structure). See Course
Elements.Developer ID (section 3.4.2).

CMI Behavior Notes

AU Behavior Notes

File Binding

Name Lesson_ID

Files & Obligations Comments File : CMI Optional, AU Optional
Interactions File :CMI Optional, AU Optional
Objectives Status File : CMI Optional, AU Optional
Path File : CMI Optional, AU Optional

Name Format Not Applicable

Value Format See data type CMlldentifierDevID for format description.
While the CMlldentifierDevID data format is valid, it is recommended
that data type CMIlldentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIldentifierGUID is a subset of CMIIdentifierDevID.

Data type CMlldentifierDevID

Examples “{E8128C30-6BF8-11cf-96FC-0020AFED9AGB5}”
HACP Binding

Name Same as File Binding

HACP Message(s) PutComments : CMI Optional, AU Optional

& Obligations Putinteractions : CMI Optional, AU Optional

PutObjectives : CMI Optional, AU Optional
PutPath: CMI Optional, AU Optional

Name Format Same as File Binding

Value Format Same as File Binding

Data type Same as File Binding

Examples | Same as File Binding
API Binding

Name Not Applicable

API & Obligations Not Applicable

Name Format Not Applicable
Value Format Not Applicable
Data type Not Applicable
Examples | Not Applicable

August-16-2004 109 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

3.0 Course Structure Data Model

This datamodel contains all of the information covered by this specification to describe a course (that may be
passed from one CMI system to another thru a course import/export process).

Datain this datamodel is also stored internally by the CMI system and is used by the CMI in determining some
values of the communication data model elements sent to AU’ sin the course at runtime. The communication data
model is described in chapter 2.0. A CMI system may have the ability to internally store and use some of the data
elementsin the course structure data model without necessarily supporting them for import/export.

Thereis only one binding for this data model (described in chapter 8.0).

The sequencing (of Assignable Units) within a course (using this data model) is described in chapter 4.0. Thetable
below lists all of the data elements in this data model.

Table Legend:
Name I ndicates the name of the data element.
Definition Indicates wherein this document a definition of the data element is found.
Mult Indicates whether the element has only asingle value— SV - or may have multiple

values- MV.

Obligation Thisindicates whether the data element is required or optional

Name Definition Mult Obligation
Course Section 3.1 SV Mandatory
Course.Creator Section 3.1.1 SV Mandatory
Course.ID Section 3.1.2 SV Mandatory
Course.System Section 3.1.3 SV Mandatory
Course.Title Section 3.1.4 SV Mandatory
Course.Level Section 3.1.5 SV Mandatory
Course.Max Fields CST Section 3.1.6 SV Mandatory
Course.Max Fields ORT Section 3.1.7 SV Optional
Course.Total AUs Section 3.1.8 SV Mandatory
Course.Total Blocks Section 3.1.9 SV Mandatory
Course.Total Objectives Section 3.1.10 SV Optional
Course.Total Complex Objectives Section 3.1.11 SV Optional
Course.Version Section 3.1.12 SV Mandatory
Course Behavior Section 3.2 SV Mandatory
Course Behavior. Max Normal Section 3.2.1 SV Mandatory
Course Description Section 3.3 SV Mandatory
Course Elements Section 3.4 MV Mandatory
Course Elements.System ID Section 3.4.1 SV Mandatory
Course Elements.Developer ID Section 3.4.2 SV Mandatory
Course Elements.Title Section 3.4.3 SV Mandatory
Course Elements. Description Section 3.4.4 SV Mandatory
Course Elements.Type Section 3.4.5 SV Mandatory
Course Elements.Command Line Section 3.4.6 SV Mandatory
Course Elements.File Name Section 3.4.7 SV Mandatory
Course Elements.Mastery Score Section 3.4.8 SV Optional
Course Elements.Max Score Section 3.4.9 MV Optional
Course Elements.Max Time Allowed Section 3.4.10 SV Optional
Course Elements.Time Limit Action Section 3.4.11 SV Optional
Course Elements.Development System Section 3.4.12 SV Mandatory
Course Elements.Launch Data Section 3.4.13 SV Mandatory
Course Elements.Web Launch Parameters Section 3.4.14 MV Mandatory
Course Elements.AU Password Section 3.4.15 SV Optional
Course Elements.Members Section 3.4.16 MV Mandatory
Course Elements.Members.System ID Section 3.4.16.1 SV Mandatory
Course Elements.Prerequisite Section 3.4.17 SV Optional

August-16-2004 110

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Name Definition Mult Obligation
Course Elements.Completions Section 3.4.18 MV Optional
Course Elements.Completions.Requirement Section 3.4.18.1 SV Optional
Course Elements.Completions.Status if True Section 3.4.18.2 SV Optional
Course Elements.Completions.Next AU if True Section 3.4.18.3 SV Optional
Course Elements.Completions.Goto after Next Section 3.4.18.4 SV Optional

August-16-2004 111

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Each element in this data model is described in tables in the following sections. The fields for each of these tables
areasfollows:

Data Element Name

The data elementsin this model are arranged hierarchically (in a*“parent/child” relationship). Hierarchy levelsare
delimited by period (“.”)s in the data element name. Any item to the right of the period delimiter isthe “child” of
proceeding item (e.g. in “Course.ID”, “Course.ID” isachild of “Course” and “ Course” isthe parent of
“Course.ID").

Definition
A description of the data element and what it is used for.

Usage
Usagerulesfor data element.

CMI Behavior Notes
A description of the expected or recommended CMI behavior when using the data element. (This field augments
“Usage)

AU Behavior Notes
A description of the expected or recommended CM| behavior when using the data element. (This field augments

“Usage)

FileBinding: Name
Data element name when used when referring to this element when used in the file binding.

File Binding: In File(s)
Filesin which the data element is contained.

File Binding: Obligation
Whether or not the data element is required for avalid course structure (in the file binding).

File Binding: Name Format
Formatting for the Name of the data element writtenin thefiles.

File Binding: Value Format
Thisfield adds additional explanation for valid values that a field may have (in addition to the definition that data
type provides).

File Binding: Data Type

Each data element binding is assigned a “ datatype’. The data type defines the size of data element and the valid
ranges of values. See section 10. Data Types

File Binding: Examples
Examples of how data element is represented in files.

August-16-2004 112 CMI001 Version 4.0

3.1 Course

AICC - CMI Guidelines for Interoperability

Data Element Name

Course

Definition

This category of data elements contains information that applies to the
course as a whole. Some of this data is designed to help in processing
the more detailed information on other data elements in the course and
how they are ordered.

Usage

See individual member data elements for obligations

Membership

Course.Creator
Course.ID
Course.System
Course.Title
Course.Level
Course.Max Fields CST
Course.Max Fields ORT
Course.Total Aus
Course.Total Blocks
Course.Total Objectives
Course.Total Complex Objectives
Course.Version

3.1.1

Course.Creator

Data Element Name

Creator

Definition

The name of the organization or individual that authored of the course

Usage

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Course_Creator
In Files Course
Obligation Mandatory

Name Format

“Course_Creator” Case insensitive.

Value Format

Data type CMIString255INI
Examples Course_Creator = “Boeing Commercial Airplane Group,
Customer Services”
Course_Creator = Airbus
Course_Creator = John, Bill, Bob, Anne, Sally
3.1.2 Course.ID
Data Element Name ID
Definition A unique identifier for the course.
Usage The value of this element is provided by CMI to AU’s at runtime via the

Evaluation.Course_ID communication data element.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Course_ID
In Files Course
Obligation Mandatory

August-16-2004

113 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name ID
Name Format “Course_ID” Case insensitive.
Value Format See data type CMlIndentifierDevID for description

While the CMIIdentifierDevID data format is valid, it is recommended
that data type CMIldentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.

Note that CMIIdentifierGUID is a subset of CMlldentifierDevID.

Data type CMlIndentifierDevID

Examples A320-Trans-NWA-2

737-700-EZY -2002-Rec

3.1.3 Course.System

Data Element Name System

Definition The name the predominant authoring system used to create the course.

Usage Values are not intended for runtime (machine) interpretation. Provided
for informational purposes only.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Course_System
In Files Course
Obligation Mandatory
Name Format “Course_System” Case insensitive.
Value Format 255 character string
Data type CMIString255INI
Examples Course System=Authorware
Course_system = PCD3 authoring
Course_System=WISE
Course_System=VACBI
3.14 Course.Title
Data Element Name Title
Definition A descriptive name (or title) given to the course.
Usage Used by the CMI to display (or report) course title to students and

administrative users

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Course_Title
In Files Course
Obligation Mandatory
Name Format “Course_Title” Case insensitive.
Value Format 255 character string
Data type CMIString255INI
Examples 747 Flight Crew Training

Maintaining 747 Avionics

Maintaining A310 Hydraulic Systems

August-16-2004 114 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

3.15 Course.Level

Data Element Name

Level

Definition

Complexity level of the file's description of the course. There are three
levels of complexity numbered 1 through 3. One is the simplest to 3,
the most complex. Level 3 is divided into two parts, referred to as 3a
and 3b. (See section 3.5 for a detailed description of each level of
course complexity)

Usage

The CMI system may or may not support all levels. Support for level 1 is
a minimum requirement. Possible values for this element are as
follows:
1 Support Level 1 course interchange. May support some features
from higher levels as well.
2 Supports all features of level 1 and level 2. May support some
features from level 3.
3 Supports all level 1, 2, 3a, and 3b features of course
interchange.
3a Supports level 1, 2, and 3a interchange.
3b Supports level 1, 2, and 3b interchange

CMI Behavior Notes

If the complexity level of a specific course is not supported, the CMI
system may provide a warning to the user.

AU Behavior Notes

File Binding
Name Level
In Files Course
Obligation Mandatory

Name Format

“Level” Case insensitive.

Value Format

Alphanumeric characters. Allowed vocabulary is “1”, 2", 3", "3a”, or
l(3bll

Data type CMlILevel
Examples Level = 3
| evel =2
| evel = 3a
3.1.6 Course.Max Fields CST

Data Element Name

Max Fields CST

Definition

Identifies the maximum number of fields that are in the course structure
tableffile (xxxxxxxx.CST file).

Usage

Some CMI systems may use this information to help process the
information in the Course Structure Table.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Max_Fields CST
In Files Course
Obligation Mandatory

Name Format

“Max_Fields CST” Case insensitive.

Value Format

Numeric characters.

Data type

CMlinteger

Examples

Max_fields CST=12
; There is at least one block (or the course itself) that
; has 11 members.

Max Fields CST =9

August-16-2004

115 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

3.1.7 Course.Max Fields ORT

Data Element Name Max Fields ORT

Definition Identifies the maximum number of fields that are in the objectives
relationships table (any.ORT file).

Usage Some CMI systems may use this information to help process the

information in the Objectives Relationship Table.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Max_Fields_ ORT
In Files Course
Obligation Optional
Name Format “Max_Fields ORT” Case insensitive.
Value Format Numeric characters.
Data type CMlinteger
Examples Max_fields_ORT=12
; There is at least one element in the left-most column that
; has 11 members.
Max_Fields ORT =9
3.1.8 Course.Total AUs
Data Element Name Total AUs
Definition The total number of unique assignable units in the course.
Usage This information may aid in the processing of information in the course

structure.

CMI Behavior Notes This number does not necessarily represent the largest digit used to
identify an AU. AU identifiers do not have to be consecutive. If there
are 5 AUs in a course (Total_AUs=5), they could be identified as A.001,
A.0021, A2, A3, A.505.

AU Behavior Notes

File Binding
Name Total AUs
In Files Course
Obligation Mandatory
Name Format “Total AUs” Case insensitive.
Value Format Numeric characters.
Data type CMlInteger
Examples Total AUs =3
; There are three assignable units in the course.
Total AUs= 84
3.1.9 Course.Total Blocks
Data Element Name Total Blocks
Definition The total number of unique blocks in the course.
Usage This information may aid in the processing of information in the course
structure.

CMI Behavior Notes As with Course.Total AUs this number does not have to be equal to the
largest number used in Block System ldentifiers.

August-16-2004 116 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name Total Blocks

AU Behavior Notes

File Binding
Name Total Blocks
In Files Course
Obligation Mandatory
Name Format “Total Blocks” Case insensitive.
Value Format Numeric characters.
Data type CMlinteger
Examples Total_Blocks = 3
; There are three blocks in the course.
Total_blocks= 84
3.1.10 Course.Total Objectives
Data Element Name Total Objectives
Definition The total number of unique objectives in the course. This number
includes both complex and simple objectives.
Usage This information may aid in the processing of information in the course
structure.

CMI Behavior Notes As with Course.Total AUs, this number does not have to be equal to the
largest number used in Objectives System Identifiers.

AU Behavior Notes

File Binding
Name Total Objectives
In Files Course
Obligation Optional
Name Format “Total_Objectives” Case insensitive.
Value Format Numeric characters.
Data type CMlInteger
Examples Total_Objectives = 3
; There are three objectives in the course.
Total_objectives= 84
3.1.11 Course.Total Complex Objectives

Data Element Name Total Complex Objectives

Definition The total number of unique complex objectives in the course. A
complex objective is an objective that has one or more Course
Elements.Members.

Usage This information may aid in the processing of information in the course
structure.

CMI Behavior Notes As with Course.Total AUs this number does not have to be equal to the
largest number used in Objectives System Identifiers.

AU Behavior Notes

File Binding
Name Total_Complex_Obj
In Files Course
Obligation Optional
Name Format “Total Complex_ Obj” Case insensitive.
Value Format Numeric characters.
Data type CMlinteger
Examples | Total Complex Obj = 3

August-16-2004 117 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Total Complex Objectives

3.1.12

; There are three complex objectives in the course.

Total complex obj= 84

Course.Version

Data Element Name

Version

Definition

Identifies the CMIOO1 - CMI Guidelines for Interoperability document
(i.e. THIS specification’s) revision number on which the Course
Structure format is based.

Usage

This element may aid in the processing of information in the
accompanying files. Version number vocabulary is restricted to
published versions of this document.

CMI Behavior Notes

CMI systems may use different course structure import/export logic
based on the value of this element.

AU Behavior Notes

File Binding
Name Version
In Files Course
Obligation Mandatory

Name Format

“Version” Case insensitive.

Value Format

See data type CMIVersionNumber for the vocabulary of allowed values.

Data type CMIVersionNumber
Examples Version = 2.0
version=3.5

3.2 Course Behavior

Data Element Name

Course Behavior

Definition

This category of data elements is used to define keywords that can be
used to affect the behavior of the CMI system for the course.

Usage
Membership Course Behavior.Max Normal
3.2.1 Course Behavior.Max Normal

Data Element Name

Max Normal

Definition

The maximum number of assignable units that may be taken for credit
simultaneously. This value indicates how many AU’s launched with
credit = credit are allowed to be incomplete.

Usage

When this number is exceeded, subsequent launches of AU’s in the
course must be with a Core.Credit value of “no-credit”. Further, the
default CMI behavior is to launch all subsequent AU’s with a
Core.Lesson Mode value of “Browse”.

Valid values are 1 to 99 inclusive. If no number is indicated, 1 is
assumed. If a number greater than 99 is indicated, then 99 is assumed.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Max_Normal
In Files Course
Obligation Mandatory

August-16-2004

118 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Max Normal

Name Format

“Max_Normal” Case insensitive

Value Format

A single integer number. Valid values are 1 to 99 inclusive.

Data type

CMlinteger

Examples

Max_Normal=1
; only 1 AU being taken for credit can be incomplete.

Max_Normal = 5

3.3 Course Description

Data Element Name

Course Description

Definition

This is a textual description of the contents of the course. It may
contain the purpose, or the scope, or a summary of the course
objectives.

Usage

May be used to display/report to a student or an administrative user the
instructional description and purpose of the course.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Course_Description
In Files Course
Obligation Mandatory

Name Format

“[Course_Description]” Case insensitive

Value Format

Freeform text. Carriage returns are implied (explicitly) at the end of
each line.

Data type

CMIString4096INI

Examples

; The val ue of Course description starts with “This”
; and ends with “change.”

[COURSE_DESCRI PTI ON]

This course explains the new JAA rules for RVSM and
the procedures affected by this change.

[Vendor Specific G oup]

3.4 Course Elements

Data Element Name

Course Elements

Definition

A Course Element is an Assignable Unit, a Block, or an Objective. This
category has information about individual Course Elements and
indicates how those Course Elements are organized and how they
relate to one another.

Additionally, this category includes information that allows the
sequencing of the Course Elements using prerequisites and completion
requirements for each when necessary.

Usage

Describe features of individual Course Elements, and how they are
organized and sequenced in a course.

CMI Behavior Notes

The order of the data elements implies (but does not force) an order for
presentation to the student.

August-16-2004

119 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Course Elements

Should a developer wish to specify a course sequence, Course
Elements.Prerequisite and Course Elements.Completion Requirement
are used to specify the order.

The first element in this category is always a Block and always has the
System ID of “root”.

AU Behavior Notes

File Binding
Name N/A
In Files Information in this category can be found in the following files:
Assignable Unit, Descriptor, Course Structure, Objectives
Relationships, Prerequisites, Completion Requirements
Obligation

Name Format

N/A

Value Format

Data type

Examples

34.1

Course Elements.System ID

Data Element Name

System 1D

Definition

A system assigned, unique, Course Element identifier. The exporting
system for the course structure generates this unique identifier for every
Course Element.

Usage

The value for Course Elements.System ID must be unique for each
individual Course Element within a given course structure.

One Course Element in a course structure has a Course
Elements.System ID value of “root” (this is a special ID for the root
membership of Course Elements in the course structure’s hierarchy).
All other values for Course Elements.System ID have the following
naming convention: A letter and a number. The letter identifies the
category of Course Element. Possible Course Element categories are
as follows:

A -- Assignable Unit

B — Block

J -- Objective or complex objective

The number is a simple integer to distinguish each unique item in a
category. Lead/trailing zeros are significant (“B011” and “B11” are
different identifiers)

CMI Behavior Notes

The numbers assigned by the CMI system do not have to be sequential.

AU Behavior Notes

File Binding
Name System_ID
In Files Assignable Unit, Descriptor, Course Structure, Objectives
Relationships, Prerequisites, and Completion Requirements.
Obligation Mandatory

Name Format

System ID’s appear in all of the course structure files and have the
following field (header) names:

August-16-2004

120 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name System 1D

“System_ID” in Assignable Unit and Descriptor Files.
“Block” in Course Structure File.

“Course_Element” in Objectives Relationships File.
“Member” in Course Structure and Objectives Relationships
Files.

“Structure_Element” in Prerequisites File.
“Structure_Element” in Completion Requirements File.
Case insensitive in all fles.

Value Format A valid system identifier (as defined in data type CMISldentifier) or the

value “root”. Case insensitive in all files.
Data type CMISldentifier
Examples Al5

B1005

J015

3.4.2 Course Elements.Developer ID

Data Element Name Developer ID

Definition A developer assigned (unique) identifier for a Course Element.

Usage For each Course Element, the value of Course Elements.Developer ID
must be unique within a course structure.

At AU launch time, the CMI system passes the value of this item to the
AU via Evaluation.Lesson ID or Objectives.ID communication data (See
sections 2.7.2 Evaluation.Lesson ID and 2.8.1 Objectives.ID).

CMI Behavior Notes

AU Behavior Notes

File Binding

Name Developer_ID

In Files Descriptor

Obligation Mandatory

Name Format “Developer ID” Case insensitive.

Value Format See description for data type CMlIndentifierDevID
While the CMlldentifierDevID data format is valid, it is recommended
that data type CMIlldentifierGUID’s formatting rules be used instead to
reduce the problems associated with developer ID collisions.
Note that CMIldentifierGUID is a subset of CMIldentifierDevID.

Data type CMlIndentifierDevID

Examples APU-747-003

A320 415 ELEC 001

A320 415 ELEC 002

3.4.3 Course Elements.Title

Data Element Name Title

Definition Commonly used name for an assignable unit, block, objective, or
complex objective.
Usage May be used by CMI system in menu screens where students can see

or select an assignable unit or block, or see the status of an objective.

CMI Behavior Notes

August-16-2004 121 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name Title

AU Behavior Notes

File Binding
Name Title
In Files Descriptor
Obligation Mandatory

Name Format

“Title” Case insensitive.

Value Format

Alphanumeric plus hyphens and underscores spaces and commas.

Data type

CMIString255CSV

Examples

"Auxiliary Power Unit, Part 1"

"Auxiliary Power Unit Start"

"Electrical Power, Part 3"

3.4.4 Course Elements.Description

Data Element Name

Description

Definition

This is a textual description of the assignable unit, objective, etc. It may
contain the purpose, or the scope, or a summary of the element.

Usage

Designed for human reading and understanding (display/reporting) only,
not intended for other purposes.

CMI Behavior Notes

The CMI system may provide a visual interface to display Course
Elements.Description to a student or administrative user on request.

AU Behavior Notes

File Binding
Name Description
In Files Descriptor
Obligation Mandatory

Name Format

“Title” Case insensitive.

Value Format

Free form textual description. Carriage returns are specially encoded
and are translated prior to display/reporting. The string “<CR>" delimits
embedded carriage returns.

Data type CMIString4096CSV
Examples “This course teaches the following: <CR> 1. How to Locate the exits
<CR>2. How to locate the emergency equipment<CR> 3. How use the
cabin intercom system”
3.4.5 Course Elements.Type

Data Element Name

Type

Definition

Assignable units (AU’s) may be categorized. Course Elements.Type
identifies a developer-defined category of assignable unit. These are
determined by the designer/developer of the assignable unit.

Usage

Course Elements.Type may be related to the ability of an assignable
unit to respond to student preferences. Assignable units with the same
value of Course Elements.Type may be able to process all student
preferences created and passed from other AU’s of the same “type”.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Type
In Files Assignable Unit

August-16-2004

122 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Type

Obligation

Optional

Name Format

“Type” Case insensitive.

Value Format

Alphanumeric. Not case sensitive. May contain spaces and commas.

Data type CMIString255CSV
Examples BTl Lesson

A320 Unit

M1684 ZX

3.4.6 Course Elements.Command Line

Data Element Name

Command Line

Definition

The string of characters needed to successfully launch an executable
program in the Microsoft Windows operating environment. Environment
variables may be embedded in the command line

Usage

This information is only used by Assignable Units. It is not appropriate
for Blocks and Objectives.

Specific file and directory locations that may be contained within this
data element are installation specific. It is the course structure creator’'s
responsibility to provide either an automated installation process or a
written manual procedure for modifying this data element in the AU file
to reflect the actual installed location of the AU's in a course.

This field is left blank for web-based AU'’s.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Command Line
In Files Assignable Unit
Obligation Mandatory

Name Format

“Command_Line” Case insensitive.

Value Format

Alphanumeric. Not case sensitive. May contain spaces.

Data type

CMIString255CSV

Examples

“APU /UAL/MN”

“ELEC3 —nuv3”

“Ovlesloc%ELEC3 —nuv3”

3.4.7 Course Elements.File Name

Data Element Name

File Name

Definition

The fully qualified name of the file containing the most critical content of
the assignable unit (an assignable unit may require several files). The
purpose of this field is to enable the CMI to locate the primary file
needed to launch an AU.

Usage

The filename indicates either a fully qualified windows file path or a fully
qualified URL (depending upon whether the course is file-based or web
based) For web-based courses, this URL indicates the “point of entry”
for web-based AU's.

The AU filename location is installation specific. It is the course
structure creator’s responsibility to provide either an automated

August-16-2004

123 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

File Name

installation process or a written manual procedure for modifying the
filename values in the AU file to reflect the actual installed location of
the AU's in a course.

This field is not used for non-AU Course Elements (i.e. Blocks and
Objectives).

CMI Behavior Notes

This element may be used to reference a non-conforming AU that does
not communicate with the CMI. In this case, the method of determining
communication data elements (like Core.Lesson Status) for the AU
sessions by the CMI is undefined and implementation dependent.

AU Behavior Notes

File Binding
Name File Name
In Files Assignable Unit
Obligation Mandatory

Name Format

“File_Name” Case insensitive.

Value Format

A URL for web-based (in web-based courses) or a Windows File name
(in file-base courses).

Data type

CMlurl or CMIFileNameFull

Examples

“C:\somedir\somefile.exe”

“E:\afile.A4P”

“http://somehost.com/dirl/dir2/index.html”

3.4.8 Course Elements.Mastery Score

Data Element Name

Mastery Score

Definition

See section 2.9.3 Student Data.Mastery Score.

Usage

The value of Course Elements.Mastery Score is passed to the AU via
Student Data.Mastery Score by the CMI at AU launch time.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Mastery Score
In Files Assignable Unit
Obligation Optional

Name Format

“Mastery_Score” Case insensitive.

Value Format

Decimal number.

Data type CMIDecimal
Examples .85

85

16

3.4.9 Course Elements.Max Score

Data Element Name

Max Score

Definition

The maximum possible value for Core.Score.Rawthat the assignable
unit will return. The AU designer determines this value.

Usage

If an AU does not support a Core.Score.Max to the CMI, Course
Elements.Max Score allows the CMI system to compute a percentage
from the Core.Score.Raw value provided by the AU.

CMI Behavior Notes

August-16-2004

124 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name Max Score

AU Behavior Notes

File Binding
Name Max_Score
In Files Assignable Unit
Obligation Optional

Name Format

“Max_Score” Case insensitive.

Value Format

Decimal number.

Data type CMIDecimal
Examples 1

1.0

23

3.4.10 Course Elements.Max Time Allowed

Data Element Name

Max Time Allowed

Definition

See section 2.9.3 Student Data.Max Time Allowed.

Usage

The value of Course Elements.Max Time Allowed is passed to the AU
by CMI via Student Data.Max Time Allowed at AU launch time.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Max_Time Allowed
In Files Assignable Unit
Obligation Optional

Name Format

“Max_Time_Allowed” Case insensitive.

Value Format

See description of data type CMITimeSpan

Data type CMITimeSpan

Examples 00:25:00
01:12:00
00:00:24.3

3.4.11 Course Elements.Time Limit Action

Data Element Name

Time Limit Action

Definition

See section 2.9.4 Student Data.Time Limit Action

Usage

The value of Course Elements.Time Limit Action is passed to the AU by
CMI via Student Data.Time Limit Action at AU launch time.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Time_Limit_Action
In Files Assignable Unit
Obligation Optional

Name Format

“Time_Limit_Action” Case insensitive.

Value Format

See CMIVocabularyINI:Time Limit Action for description

Data type CMIVocabularyINI:Time Limit Action
Examples “E,N”

“exit,n0_message”

om’

August-16-2004

125 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

3.4.12 Course Elements.Development System

Data Element Name

System

Definition

Authoring system (or development tools) used to create the assignable
unit. This information is provided by the course developer

Usage

For display/reporting (informational) purposes only. Not intended for
machine interpretation.

CMI Behavior Notes

The CMI administrative user interface may display this information in a
course editing or reporting functions.

AU Behavior Notes

File Binding
Name System Vendor
In Files Assignable Unit
Obligation Optional

Name Format

“System_Vendor” Case insensitive.

Value Format

Authoring system and version number.

Data type

CMIString255CSV

Examples

Authorware 3.2

Tool Book 4.0

VACBI 2.0

3.4.13 Assignable Unit.Launch Data

Data Element Name

Launch Data

Definition

See section 2.3 Launch Data.

Usage

The value of Assignable Unit.Launch Data is passed by the CMI to the
AU via Launch Data at AU launch time.

Prior to passing this value to Launch Data, carriage return tokens (in the
form of the string “<CR>" - case insensitive) in Assignable Unit.Launch
Data are translated to carriage return/line feeds.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Core Vendor
In Files Assignable Unit
Obligation Mandatory

Name Format

“Core_Vendor” Case insensitive.

Value Format

Carriage returns are encoded with “<CR>" (case insensitive) tokens.

Data type

CMIString4096CSV

Examples

“Testmode=on <CR>configuration=PW168<CR>audience=FQ”

“Testmode/on, configuration/PW168, audience/FO”

3.4.14 Course Elements.Web Launch Parameters

Data Element Name

Web Launch Parameters

Definition

AU-specific launch parameters for web-based AU’s. Additional
name/value parameters that must be appended to the “URL Command
line” (See sections 6.3) at AU launch time.

Usage

This data is appended to the "query" portion (after the “?” separator) of
the “URL command line”. (See sections 6.3)

CMI Behavior Notes

AU Behavior Notes

August-16-2004

126 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Web Launch Parameters

File Binding
Name Web Launch Parameters
In Files Assignable Unit
Obligation Mandatory

Name Format

“Web Launch” Case insensitive.

Value Format

URL-encoded name/value pairs. Formatted in the following manner:
1. Values of the parameters are communicated in (name/value pair)
form “<parameter Name> = <Parameter value>".

The “namel/value pairs” are separated by ampersands (“&").

The name/value pairs can be in any order.

Parameter names are not case sensitive.

Parameter values may be case sensitive.

akrwbd

All parameters must be URL-encoded (see section 6.4.1.1)

Data type

CMIurlEncNVPairList

Examples

Vparam1=1234&Vparam2=Question%3F&vparam3=more+stuff

3.4.15 Course Elements.AU Password

Data Element Name

AU Password

Definition A string of characters sent to the CMI system that enables the CMI
system to authenticate an assignable unit. This authentication is
independent of any user authentication that the CMI system uses.

Usage The password value is AU developer-defined and is sent with HACP

request messages (see section 6.4.2), so that the CMI system can
authenticate the AU making the request. The CMI compares the value
of this element with the value passed by the AU in HACP request
messages.

If an AU has an AU Password defined in the course and the
corresponding AU does not issue the proper password value in HACP
request message, then the CMI must issue a HACP response message
(see section 6.4.3), with the appropriate error number (see section
6.4.8).

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Web Launch Parameters
In Files Assignable Unit
Obligation Optional

Name Format

“AU_Password” Case insensitive.

Value Format

See datatype in section 9.0.

Data type CMIString255CSV
Examples Trustlone
TheSecretWord

3.4.16 Course Elements.Members

| Data Element Name

Members

August-16-2004

127 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Members

Definition

A list (array) of “members” of a Course Element in the course structure
data model hierarchy. The course structure data model follows a
hierarchy where Course Elements may contain other Course Elements
in the following manner:
Blocks may contain Assignable Units and Objectives.
Objectives may contain Blocks and Assignable Units.
Assignable Units may contain Obijectives.

Each record in this array is composed of the following sub-elements:
Course Elements.Members.System ID

Usage

The values for each item in this list are the Course.System ID values of
other Course Elements. (i.e. the children referenced as being contained
in this Course Element)

CMI Behavior Notes

When there are no explicit completion requirements for a Course
Element, the status of the Course Element is determined by the status
of its members and default rules (see section 4.2.1).

AU Behavior Notes

3.4.16.1 Course Elements.Members.System 1D

Data Element Name

System ID

Definition

The System ID (See Course Elements.System ID) identifying the
Course Element that is contained in (is a member of) the current
Course Element.

Usage

The value of this field is set to the value of Course Elements.System ID
for the Course Element that is a member of the current Course Element

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Member
In Files Course Structure and Objectives Relationships
Obligation Mandatory

Name Format

“Member” Case insensitive.

Value Format

A valid system identifier. Case insensitive in all files. See description of
data type CMISldentifier

Data type CMISldentifier
Examples B15

A023

J53

3.4.17 Course Elements.Prerequisite

Data Element Name

Course Elements.Prerequisite

Definition

A logical (Boolean) expression indicates what other Course Elements
must be complete before a student will be allowed to enter the given
(Block or Assignable Unit) Course Element. If the expression evaluates
true, the “prerequisites” are met, and the student user may enter the
(Block or Assignable Unit) Course Element

Usage

Course Elements.Prerequisite does not apply to Objectives Course
Elements. (Although the logical expression can reference Obijectives).

There shall be no more than one Course Elements.Prerequisite for

August-16-2004

128 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Course Elements.Prerequisite

each Block or Assignable Unit Course Element. The prerequisites for a
Block Course Element apply to all the members of that Block.

Prerequisites are additive. Individual members of a Course Element
may have prerequisites in addition to the parent’s prerequisites that
must be met before a student may enter them.

All logical expressions are Boolean (i.e. are evaluated to either true or
false). Rules for interpreting logical expressions are described in 4.3.4
Logical Expressions

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Prerequisite
In Files Prerequisites File
Obligation Optional

Name Format

“Prerequisite” case insensitive.

Value Format

Logical expression as described in Chapter 9.

Data type

CMILogic

Examples

AS5&A6

(A004 | A003 | A002) & B3

3*{A1,A2,A3,A4,(B3|B4)}

3.4.18 Course Elements.Completions

Data Element Name

Course Elements.Completions

Definition

An array of data elements that define how to achieve a specific status
for a Course Element, and what to do after that status is achieved.
Used to force a student to follow a course sequence depending on
performance in other Course Elements

Each record in this array is made up of the following sub-elements:
Course Elements.Completions.Requirement
Course Elements.Completions.Status if True
Course Elements.Completions.Next AU if True
Course Elements.Completions.Goto after Next\

Usage

There may be more than one Course Elements.Completions record for
each Course Element. There may be a record for each possible status
that may be achieved in a Course Element.

Completions are evaluated in the order in which they appear. The first
Course Elements.Completions record to evaluate true determines
status of the Course Element and actions of the CMI system.

CMI Behavior Notes

AU Behavior Notes

August-16-2004

129 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

3.4.18.1 Course Elements.Completions.Requirement

Data Element Name

Course Elements.Completions.Requirement

Definition

A logical (Boolean) expression indicating what conditions must be met
before the status of a course element is modified to match the
associated value of Course Elements.Completions.Status_If True and
any Course Elements.Completions.Next AU if True is launched by the
CML.

Usage

CMI system verifies that the logical expression in this field is true before
setting the course element’s status to the value in the associated
Course Elements.Completions.Status if True. Also, if the expression is
true then Course Elements.Completions.Next AU if True and Course
Elements.Completions.Goto after Next are used to direct the student to
the specified AUs.

If the logical statement in Course Elements.Completions.Requirement
does not evaluate to true then the course element’s Core.Lesson Status
is not changed by the current completion rule and Course
Elements.Completions.Next AU if True is ignored along with Course
Elements.Completions.Goto after Next.

All logical expressions are Boolean (i.e. are evaluated to either true or
false). Rules for interpreting logical expressions are described in 4.3.4
Logical Expressions

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Requirement
In Files Completion Requirements File
Obligation Optional

Name Format

“Requirement” case insensitive.

Value Format

Logical expression as described in Chapter 9.

Data type

CMILogic

Examples

AS5&A6

(AO04 | A003 | A002) & B3

3+A1,A2,A3,A4 (B3|B4)}

3.4.18.2 Course Elements.Completions.Status if True

Data Element Name

Course Elements.Completions.Status if True

Definition

The new status value that the Course Element is set to if the logical
expression in Course Elements.Completions.Requirement evaluates as
true.

Usage

When the logical expression in
Course Elements.Completions.Requirement evaluates as true, the
following things are done by the CMI:

1. The status of the Course Element is set to the value of Course
Elements.Completions.Status if True.

2. If the Course Element is an AU, the value of Core.Lesson Status
will be set to the value of Course Elements.Completions.Status if
True for that AU at launch time.

August-16-2004

130 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Element Name

Course Elements.Completions.Status if True

If this data element is left empty, then the status of the Course Element
is computed by the “default status setting behaviors”. The default
status setting behaviors are as follows:

1. AU Course Element - If the course element is an AU, either the
value returned by the AU in Core.Lesson Status will be used or the
CMI will determine a status based on Core.Lesson Score and
Student Data.Mastery Score rules.(See Student Data.Mastery Score)

2. Block or Objective Course Element — If the course element is a
Block or an Objective, then status is determined by the status of all
the course elements listed in Course Elements.Completions-
.Requirement. If all of these evaluate to “complete”, then the course
element’s status evaluates to “complete” otherwise the course
element in question is “incomplete”.

CMI Behavior Notes

AU Behavior Notes

File Binding
Name Result
In Files Completion Requirements File
Obligation Optional

Name Format

“Result” case insensitive.

Value Format

See description for data type CMIVocabularyINI:Status

Data type CMIVocabularyINI:Status
Examples Passed

N

F

3.4.18.3 Course Elements.Completions.Next AU if True

Data Element Name

Course Elements.Completions.Next AU if True

Definition

Identifier of the student’s next assignable unit if the logical expression in
Course Elements.Completions.Requirement evaluates true.

Usage

Force a student to follow a sequence (of AU’s) without seeing any
options. Link two or more assignable units together seamlessly.

CMI Behavior Notes

When this data element exists, the next AU shall be launched
automatically without allowing the student to see any CMI menu
screens.

The AU launch shall take place regardless of prerequisites for the Next
AU.

AU Behavior Notes

File Binding
Name Next
In Files Completion Requirements File
Obligation Optional

Name Format

“Next” case insensitive.

Value Format

See description of data type CMISIdentifier

Data type CMISldentifier
Examples Al15

A023

A002

August-16-2004

131 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

3.4.18.4 Course Elements.Completions.Goto after Next

Data Element Name

Course Elements.Completions.Goto after Next

Definition

Identifier of the student’s assignable unit after finishing “Course
elements.Next AU if True”.

Usage

Force a student to return to the original assignable unit (Course
Elements.ID) after a remedial unit.

Force a sequence of 3 assignable units.

CMI Behavior Notes

When this data element exists, the Goto after Next AU shall be
launched automatically without allowing the student to see any CMI
menu screens.

The launch shall take place regardless of the prerequisites for the “Goto
after Next” AU.

AU Behavior Notes

File Binding
Name Return
In Files Completion Requirements File
Obligation Optional

Name Format

“Return” case insensitive.

Value Format

System ID for an Assignable Unit.

Data type CMISldentifier
Examples Al5

A023

A002

August-16-2004

132 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

3.5 Levels of Complexity

This specification defines 5 level s of complexity in describing a course structure. This section describes each course
level. Each level isagrouping of course structure functionality (support of course data model elements). The
course levels defined in this specification are as follows:

Level 1

Thisisthe simplest level. It describes the contents of the course, assignable units. It also defines the course
structurein terms of assignable units and blocks. It allows the construction of a course hierarchy. The order in
which the student may go through the course is only implied with the structure. This description cannot force any
order on the student user.

Includes all data elements defined as Mandatory. May include additional data elements defined aslevel 2, 3a, or 3b.
(See section 3.5.1 for data elements included in thislevel)

Level 2

Thislevel of complexity adds a possible single prerequisite for each structure element -- an assignable unit or a block.
The evaluation of each prerequisite —true or false —is done by default. The order in which the student moves through
the course can be affected by these prerequisites (see Course Elements.Prequisite).

Thislevel also introduces the ability to identify simple completion requirements. This means a structural element’s
completion status can affect another element. This concept enables (among other things) the use of separate
assignable units as pre-tests. Thusthe completion of one assignable unit (such as apre-test) can result in the “ Pass”
status of another unit (such as an instructional lesson).

Includes al information (data elements) defined as Level 1 and 2. May include additional data elements defined as
level 3aor 3b. (See section 3.5.1 for data elementsincluded in thislevel)

Level 3a

Level 3aaddsto level 2 the ability to define complex prerequisites and complex completion requirements. Logical
expressions (see section 4.2.3) may be used to describe these requirements. Completion requirements may be used
to force assignabl e unit sequences without breaks between each.

Includes all information (data elements) defined aslevel 1, 2, and 3a. May include additional data elements defined
aslevel 3b. (See section 3.5.1 for data elementsincluded in thislevel)

Level 3b
Level 3b adds the description and use of objectives to the course description and sequencing information. It
includes the description of the relationship of objectives to the course structural elements.

Includes all information (data elements) defined aslevel 1, 2, and 3b. May include additional data elements and
features defined as level 3a. (See section 3.5.1 for data elementsincluded in thislevel)

Leve 3

Includes all information and features defined as level 1, 2, 3a, and 3b. Supporting 3a and 3b allows the use of
complex prerequisites and completions with objectives. (See section 3.5.1 for data elementsincluded in thislevel)

August-16-2004 133 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

3.5.1 Course Level Mapping

Thetable below depicts the mapping of course levelsto course data elements. The “Course level” column depicts at
which level adataelement isadded (See notes below for exceptions). Most levels are additive - see section 3.5 for
adescription of each level.

Course Structure Data Element Section le):\lrzf Notes
Course 3.1 1
Course.Creator 3.1.1 1
Course.ID 3.1.2 1
Course.System 3.1.3 1
Course.Title 3.14 1
Course.Level 3.15 1
Course.Max Fields CST 3.1.6 1
Course.Max Fields ORT 3.1.7 3b
Course.Total Aus 3.1.8 1
Course.Total Blocks 3.1.9 1
Course.Total Objectives 3.1.10 3b
Course.Total Complex Objectives 3.1.11 3b
Course.Version 3.1.12 1
Course Behavior 3.2 1
Course Behavior. Max Normal 3.2.1 1
Course Description 3.3 1
Course Elements 3.4 1
Course Elements.System ID 3.4.1 1
Course Elements.Developer ID 3.4.2 1
Course Elements.Title 3.4.3 1
Course Elements. Description 3.4.4 2
Course Elements.Type 3.4.5 2
Course Elements.Command Line 3.4.6 1
Course Elements.File Name 3.4.7 1
Course Elements.Mastery Score 3.4.8 2
Course Elements.Max Score 3.4.9 2
Course Elements.Max Time Allowed 3.4.10 2
Course Elements.Time Limit Action 3.4.11 2
Course Elements.Development System 3.4.12 2
Course Elements.Launch Data 3.4.13 1
Course Elements.Web Launch Parameters 3.4.14 1
Course Elements.AU Password 3.4.15 2
Course Elements.Members 3.4.16 1
Course Elements.Members.System ID 3.4.16.1 1
Course Elements.Prerequisite 3.4.17 2,3b #1
Course Elements.Completions 3.4.18 2
Course Elements.Completions.Requirement 3.4.18.1 2,3a,3b #2
Course Elements.Completions.Status if True 3.4.18.2 2
Course Elements.Completions.Next AU if True 3.4.18.3 2
Course Elements.Completions.Goto after Next 3.4.18.4 2

Notes

Course Elements.Prerequisite (Note #1)
Level 3b - Complex logic statements with objective references shall be supported.

Cour se Elements.Completions.Requirement (Note #2)
Level 2 - Only support for simple completion requirementsisrequired.
Level 3a- Logic statementsto define completion requirements shall be supported (see chapter 4.0).
Level 3b - Complex logic statements with objective references shall be supported. (see chapter 4.0).

August-16-2004 134 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

4.0 Assignable Unit Sequencing within a Course

The course structure datamodel (see chapter 3.0) provides information on the sequencing of the assignable unitsin
the course. Thisisnot intended to limit the sequencing options of any CMI system. It does provide a description of
sequencing (in a course structure definition) that can exported for use in other conforming CMI systems (that
support the data elements used). This chapter provides further information on the usage of course data elements (in
Chapter 3.0) for assignable unit sequencing in acourse. Thereisonly one binding for the course data model (the file
binding - see chapter 8.0) all examplesin this chapter use this binding.

4.1 Structure

Behavior of acourseisbased on how it isstructured. This specification assumesthereisaknown world of course
components, called Course Elements. There are three kinds of Course Elements:

1. Assignable Units: represented graphically as a parallelogram (shown below)

2. Blocks: represented graphically as rectangles (shown below)

3. Objectives: represented graphically as ovals (shown below)

If acomponent can be selected and launched by a CMI, it is called an Assignable Unit (AU).

ASS|gnabIe Block Objective
Unit

Assignable Unit, Block and Objective

Every Course Element has a unique identifier assigned by the CMI system. Thisidentifier is called the "system
identifier" and is only unique for agiven course. See Course Elements.System ID for adescription of system
identifiers.

AU's can be grouped into blocks. Blocksin turn, can be grouped into other blocks, and so forth This ability to
group AU’ s and Blocks offers the ability to organize a course into logical sections or units.

EBlock

A/
e e

Block

Blocksand AU’s

Objectives can be associated with Assignable Units and Blocks. Objectives can be associated with asingle AU or
block, or with many.

August-16-2004 135 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

In theillustration below, one objective is associated with two assignable units. This means that the status of the
objective depends upon the status of the two assignable units with which it is associated.

The way this relationship would appear in an Objectives Relationships File is shown here.

Course_Element, Member, Member

J20, A21, A22

Intheillustration below, there are three objectives covered in a single assignabl e unit.

5

The way this relationship would appear in an Objectives Relationships File is shown here.

Course_Element, Member, Member, Member

A30, ns, 15 137

August-16-2004 136 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Intheillustration below, one objective (J10) isrelated to ablock, several assignable units, and other objectives.
Exactly how the objective isrelated is unclear from theillustration. However, the Course Description data model
allows explicit relations to be identified.

The way this relationship would appear in an Objectives Relationships File is shown here.

Course_El erent, Menber, Menber, Menber
J10, B18, A23, J41
B18, Al5, Al6, Al7
Al7, J31

A24, J41

A course is therefore made up of blocks, assignable units, and objectives.

August-16-2004 137 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

While course structureis atool for organizing learning content, it does not provide alot of sequencing information.
For instance, the course in the illustration below could begin with any of the AU's.

[| (D,

B1 A3 B2 /A5 J18

Figure4.1-1 Course with Members I dentified

The AICC course structure is described in the data model. 1t can also be described in atable. By default, the
implied sequence of the elementsin the course is from top to bottom in the data model, and from left to right and top
to bottom of the table. 1f amore complex sequenceis desired, sequencing rules must be used.

Course Structure Example:

“Bl ock”, " Menber”, " Menber”, ” Menber”
ROOT, B1, B2, A6, A7, A8

B1, Al, A2, A3

B2, A4, A5

August-16-2004 138 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

4.2 Sequencing

The sequencing with in course structureis primarily defined by the following items:

Prerequisites. Prerequisites are requirements that must be satisfied by a student before entering anew AU
or Block. Prerequisites are defined in terms of completion statuses of AU's, Blocks, and Objectives. This
isthe main tool for sequencing decisions of the CMI.

Completion Requirements. Completion Requirements refers to what is required in order to consider a
Block or AU finished. More specifically, what is required to obtain a given status of a Course Element
(AU, Block, or Objective).

/
Prerequisites Assignable Compl etion
Unit Requirements

Prerequisites [\ EEJOCK Completion

NS T
Objective Completion

%7 RGQUI rements

Requirementsfor Sequencing

421 Course Element Status

The status of course elementsis used in determining prerequisites and completion requirements. The status of a
course element can be one of the following:
- passed

failed

completed

incomplete

browsed

not attempted

The status can be defined explicitly, or be calculated by default. The status of an assignable unit is normally
determined by the AU and reported to the CMI system viaCore.Lesson_Status. The default status of ablock is
complete when all of its members are complete. It is passed when all of its members are passed. It is complete
when some of its members are passed and the rest are complete. It isincomplete aslong as a single member isnot
passed or complete. The default status of an objective is determined the sasme way. The objective isincomplete as
long as a single member is not passed or complete.

August-16-2004 139 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Course Element Status Member Status

Passed All passed

Completed All completed

Conpleted One or more passed, the rest completed
Failed One or more failed

Incomplete One or more Incomplete

Incomplete One but not all Not Attempted

Browsed All members Browsed

Not Attempted All members Not Attempted

Default Statusfor Blocks

4.2.2 Data Model Sequencing Elements
Thefollowing tablelists al of the data model elements that are related to defining sequencing in a course structure. .

Data Elements Section

Course Elements.System_ID 3.4.1

Course Elements.Members 3.4.15
Course Elements.Prerequisite 3.4.16
Course Elements.Completions 3.4.17
Course Elements.Completions.Requirement 3.4.17.1
Course Elements.Completions.Status if True 3.4.17.2
Course Elements.Completions.Next AU if True 3.4.17.3
Course Elements.Completions.Goto after Next 3.4.17.4

Data Elements Related to Sequencing

4.2.3 Logical Expressions

Some course sequencing depends upon “logical expressions’. This section describes the logical expressions that
may be used in the AICC data model for Course Interchange.

A logical expressionisalist of one or more Course Elements.System I1D’s combined with logical operators (see
section 4.3.3.1). Logical expressions are Boolean (evaluated to either true or false) statements. The values of
Course Elements.Completions.Requirement (see section 3.4.16) and Course Elements.Prerequisite (see
section 3.4.17.1) arelogical expressions. A logical expression containing only asingle Course
Elements.System ID isa“simplelogical expression”. A logical expression containing one or more logical
operatorsisa“complex logical expression”.

Each Course Elements.System D listed in alogical expression is evaluated to either true or false depending
upon the status (see section 4.3.1) of its associated course element. The table below shows how statuses are

mapped to true or false by “default” (i.e. the absence of a Course Elements.Completions.Requirement for the
given course element listed in the logical expression):

Course Element’s Status Evaluates to
passed True
completed True
failed False
incomplete False
browsed False
not attempted False

Logical operators are used to form complex logical expressions. The table below defines the allowed logical
operators for complex logical expressions.

August-16-2004 140 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Operator Symbol Definition
and & All elements separated by an “&” (ampersand) must be complete (i.e. true) for the
expression to be evaluated as complete.
A34 & A36 & A38

Assignable units number 34, 36, and 38 must all be completed or passed (i.e. “true”) for
the group to be considered complete.
or If any of the elements separated by an | are “true” the expression is considered true.
A34=P | A36=P | A38=P
If any one of the Assignable Units, 34, 36, or 38, are passed then the expression is
considered True.
not ~ An operator that returns false if the following element or expression evaluates true. It
returns true if the following element or expression evaluates as false.
~A35
This expression is false if Assignable Unit 35 is Passed or Completed. This expression is
true if AU 35 is Incomplete, Not Attempted, Failed, or Browsed.
equals = Used in a logical statement in the following manner: <Course Element>=<status value>

Evaluates to true when a course element (on the left side of the sign) has the same
status value (see section 4.3.3) as the one indicated on the right side of the equals sign.

For example:
A35=P
If assignable unit A35’s status is passed, then the statement evaluates to true otherwise it
is false.
group or set {} A list of Course Elements separated by commas and surrounded by curly brackets -- { }.

A set differs from a block, in that the set is defined only for purposes of the describing
prerequisites or completion requirements. A set has no effect on the structure of the
course. For example:

{A34, A36, A37, A39}

Assignable units 34, 36, 37, and 39 are part of a set.

separator for , The comma is used to separate the members of a set. Each member of the set can
set members be evaluated as a Boolean element — true or false.
For example:

{A34, A36, A37, A39}

Assignable units 34, 36, 37, and 39 are each separated by a comma in this set.

complete X X*{ '} X'is an integer number. This operator means that X or more members of the set
number out of that follows must be evaluated as true for the entire set to be evaluated true.
a set “3*{A34, A36, A37, A39}"

Any three or more of the following units — 34, 36, 37, 39 -- must be Passed or Completed
before the expression can be evaluated as true.
evaluate first () The expression inside the parenthesis () must be evaluated before combining its
results with other parts of the logical statement. Parentheses may be nested.
“A34 & A35 | A36”
In this expression, completing A36 all by itself enables an evaluation of true.
“A34 & (A35| A36)”
Adding parentheses makes it necessary to complete at least two units (A36 all by itself is
no longer enough) to evaluate the expression as true.

Operator Precedence
Logical operators within are logical expression are evaluated in a specific order. The order of precedenceis defined
in the table below

Operator Order of
Precedence
= 1
0 2
{1 3
~ 4
& 5
| 6

Examples:
August-16-2004 141 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Example 1

[AL8

If this AU System Id appearsin alogic statement, it evaluates astrueif the course element A18 statusis passed or
completed.

Example 2

[A18=P

If this expression appearsin alogic statement, it evaluates astrue only if the AU statusis passed.

Example 3
| A18=br owsed

This expression evaluates as true only if the AU has a status of browsed.

Example 4

[A23 & A28

Evaluatestrue if Both AU 23 and AU 28 have a status of passed or compl eted.

Example5

(A23=p | A23=c) & (A28=p | A28=c)

Evaluates exactly the same as example 4.

Example 6

3*{A23, A25, A26, A28, A29} |

Evaluates astrueif three or more of the five members of the set of assignable unitshas a status of passed or
completed.

Example 7

3*(A23=p, A25=p, A26=p, A28=p, A29=p} |

Evaluates astrue if three or more of the five members of the set of assignable units has a status of passed. A
completed AU now evaluates as false.

Example 8

~Al5 |

Evaluates as false with a status of passed or completed. Evaluates as true with a status of incomplete, not attempted,
browsed, or failed.

Example 9

~(A31=F) |

Evaluates astrue if A31 has a status of passed, browsed, not attempted, completed, or incomplete. Evaluates false if
A3lisfailed.

August-16-2004 142 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

4.3 Completion Requirements

Completion requirements fall into two categories, simple and complex. Simple requirements contain only asingle
course element system identifier or simple logical expression (e.g. “A002") as the value for Course
Elements.Completions.Requirement. Complex requirements contain a complex logical expression (e.g.
“A003&A004") in the Cour se Elements.Compl etions.Requirement.

Return to
CMI

A7 A
Passed ° Passed

/

Seamless Linking of Assignable Units

In thefigure above, the linking of AU number 7 and 8 is shown. The Course Elements.Completions.Requirement is
stated as a single assignable unit. When the status of the AU is not made explicit with an equals sign (=), the AU
evaluates as true whenever its status is Passed or Completed. In this case, the Statusif True of the AU reporting
back to the CMI with a status of Passed or Completed, isthat the CMI assigns a status of Passed. The Next AU if
Truedataelement indicates that as soon as A7 achieves a status of passed, the CMI will automatically launch A8.
When A8 is passed, the student will return to the course menu.

A Completion Requirements File would include the following lines.

Structure_El enment, Requirenent, Result, Next, Return
A7, A7=Passed | A7=Conpl eted, Passed, A8

In the Compl etion Requirements File, the record for A8 istotally superfluous, because the default behavior isto
return to the CMI anytime that a student leavesa AU for any reason.

Return to
CMI
A7 P | A8 b
V4
ed assed
Al7
Remediation)

Figure4.3-1 More Seamless Linking

Now assume that thereisaremedial AU called “A17”. If the student fails A7, he should immediately begin the
remedial AU. After the student passes A17, he should then move seamlessly into A8.

August-16-2004 143 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Linesin the Completion Requirements File would include the following

Structure_El enment, Requirenent, Result, Next, Return
A7, A7=Fai | ed, Fail ed, Al17,

A7, A7=Passed, Passed, A8,

Al7, Al7=Passed, Passed, A8,

What happensif the student fails A17? Thereisno defined "next" for this status, so the student would return to the
CMI, which isthe default behavior. What the CM| does after the student fails the remedial AU is not defined here.
In fact, what the CMI does upon student failure of the remedial AU may not be defined in any of the sequencing
rules accompanying the course..

4.3.1 Complex Completion Requirements

Complex requirements are those with a complex logical expression (see section 4.3.3). Complex logical expressions
are useful in defining when ablock is complete. Assume thereisablock, B4, with four assignable units, A14, A15,
A16,and A17.

=] [

A Typical Block

By default, B4 is considered passed when all of its members are passed. Thisisdefined explicitly inthefile
fragments below.

AICC Completion Requirements File fragment.

Structure_El enment, Requirenent, Result, Next, Return
B4, Al4=P & A15=P & Al16=P & A17=P, Passed, ,

By adding an additional line to the Completion Requirements file, the default for completed can also be explicitly
expressed.

Structure_El ement, Requirenent, Result, Next, Return
B4, A14=P & A15=P & A16=P & Al17=P, Passed,,
B4, (Al4=P | Al14=C) &(Al5=P | A15=C)&(Al6=P | A16=C) &(Al7=P | Al7=C), C,,

The computer shall evaluate Completion Requirementsin the order in which they appear in the file. Consequently,
the two compl etion regquirements together express the default behaviors for Passed and Compl eted.

When a Course Element appears without an equal sign in the requirement field, it is evaluated as true when its status
is Passed or Completed.

August-16-2004 144 CMI001 Version 4.0

4.3.2

AICC - CMI Guidelines for Interoperability

Completion Requirements - Rules of Execution

The following section lists the CMI requirements for the execution of compl ete requirements rules associated with a
course structure. The order of completion requirements rule execution and when compl etion requirements rule
execution occurs are described.

The CMI requirements for Completion Requirements (rules) execution are as follows:

1

10.

11.

12.

13.

Each record in the Compl etion Requirements (CMP) table defines a completion requirement rule for a
course element.

A course element may have multiple rules (records) associated with it.
CMP rulesfor a course element override the default rules for status setting behavior.

CMP rules are order dependent. The order in which each rule appears in the CMP table must be preserved
by the CMI. The CMP table rules must be evaluated in that order by the CMI.

A CMP rule"fires" (updates a course element’ s status and/or automatically launches an AU) when its
associated REQUIREMENTS field expression evaluates to "true".

The CMPrulesare evaluated in a"single-pass’ from the beginning of thetable. Thereisno recursion of
rules (evaluation of the current rule does not trigger evaluation of any rules associated with the course
elementsin the REQUIREMENTS expression for the current rule). The rules evaluation “pass” will
continue to the end of the CMP table (unless an AU is automatically launched).

CMPrules are eval uated when a student launched AU exits or when aNEXT AU or aNEXT/RETURN

AU sequenceterminates. If arule“fires” and resultsin the automatic launch of aNEXT AU, followed by a
RETURN AU. Then the CMP rules are evaluated after the RETURN AU exits (NOT when the NEXT AU
exits)

If no NEXT/RETURN sequenceisinvoked during a"pass', the CMP rules will continue to be eval uated
until the end of CMP records are reached. The CMP rules will not be evaluated again until another AU is
launched (by the student) and terminated.

If aCMP rule automatically launches an AU or a sequence of two AU’s, rule evaluation is halted until the
associated AU(s) have been sequentially launched and terminated. When the automatically launched
AU(s) have terminated, rule evaluation will restart from the beginning of the CMP table.

If a course element does have multiple rules (records) associated with it, only the first one to evaluate to
"true" isalowed to “fire” during a"pass’. All subsequent rules for the same course element are ignored
during the remainder of the rules evaluation “ pass”.

When evaluating the "Requirement” field to determineif arulefires, the current statusof all referenced
course elements are to be used. Status changes due to rulesthat fired earlier in the same "pass' through the
CMPrulesareincluded in rule evaluation of subsequent rules. (i.e. status changes caused by rule 1 “firing”
will affect rule 3 if rule 3 referenced course elements changed by rule 1)

A NEXT/RETURN launch sequence overrides any prerequisites defined in the PRE (Prerequisites) file.
Theindicated AUs must be launched by the CMI even if the student would not otherwise be allowed to
launch the lessons due to unfulfilled prerequisites.

A rulefor agiven course element may reference itself in the REQUIREMENTS field. The status value
used (for the self-referring course element) in rule evaluation would either be determined by thelast AU
launched or the previous rules eval uation “pass”.

August-16-2004 145 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

14. If thefiring of a CMP ruleresultsin achange to the status of the associated course element then the parent
course element (if any) containing the changed element must have its own status re-evaluated. The parent
element must be re-evaluated using the default status rules described in 4.2.1. If the re-evaluation resultsin
astatus change in the parent element then its parent must also be re-evaluated. This upward ripple of status
re-evaluation must continue until a parent element is reached that does not evaluate to a different status or
until there are no higher level course elements. All status re-eval uations must be completed before the next
CMPruleisevaluated.

August-16-2004 146 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

4.4 Prerequisites

Prerequisites for agiven Course Element are defined in alogical expression (see section 4.2.3). If thelogical
expression evaluates as true, then the student may begin the Course Element, if it evaluates False, the student is
prohibited from beginning the Ele ment.

4.4.1 Simple Prerequisites

Simple prerequisites are based on the status of asingle Course Element. Many fairly sophisticated course
navigation schemes can be constructed with simple prerequisites. Perhapsthe most common is the sequential
course. Assune there are four AU's, and the devel oper wants them to be taken in sequence.

[e =/

Sequential Course

The file fragments below show how the sequential path is forced on the student with prerequisite logic. Thereisno
prerequisite for A1, but there are prerequisitesfor A2, A3 and A4, so A1 must be taken first. After passing or
completing A1, the only AU for which the student has met the prerequisites, isA2. So A2 must be taken second.
After passing A2, the only new AU for which the student is now qualified is A3. And so forth..

AICC Prerequisites File

Structure_El ement, Prerequisite
A2, Al
A3, A2
A4, A3

More complex course structures may require the creation of blocks. Simple prerequisites can still be used to enforce
adesired sequence. Assumetherearefour AUs. Thefirst AU isan introduction that must be taken before any
others. AUsA2 and A3 can betakeninany order, but AU A4 requires the completion of A2 and A3 (Block B1).

August-16-2004 147 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Bl

More Complex Course

AICC Course Structure File

bl ock, nenmber, nmenber, nenber
root, Al, Bl, A4
B1, A2, A3

AICC Prerequisites File

Structure_El enment, Prerequisite
B1, Al
A4, Bl

August-16-2004 148

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

4.4.2 Complex Prerequisites

Complex prerequisites allow the use of complex logical expressions for the prerequisite column in the Prerequisite
table. Asanexample of some of the additional capabilities possible with complex prerequisites, return to the
example of asequential course of 4 AU'sillustrated below..

[e e =t/

Sequential Course

In this case however, assume that the course designer does not want the student to revisit any AU after it is passed.
With complex prerequisites, you can force alinear sequence, and prevent the review of aprevious AU. The
following file fragments show how this may be done.

Noticethe Al prerequisiteisthat A1 not be passed. AssoonasAl is passed, the prerequisite cannot be met. The
student is"locked out."

AICC Course Structure File

bl ock, nenmber, menber, nenber
root, Al, Bl, A4
B1, A2, A3

AICC Prerequisites File

Structure_El enment, Prerequisite

Al, ~(Al=p)
A2, ~(A2=p)
A3, ~A3=p
B1, Al

A4, Bl=p & ~A4=p

August-16-2004 149 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

4.4.3 Complex Sequencing

The more common use of complex prerequisitesisto allow complex navigation schemes to be described.

In the course shown in the figure below, the structure isreflected in the file fragments that follow.

Al

Complex Navigation

Inside Block 1, the AUs must be taken sequentially. This can be forced with prerequisites. A3 and A4 need to be
seamlessly linked together so the student takes both in asingle session. This can be done with Completion
Requirements,

Block B2 has B1 as a prerequisite. This meansthat no element in B2 can be started until all elementsin B1 are
Passed or Completed. There may be additional prerequisites defined for elementsin B2, but their definition is
always additive. For instance, A8 has A7 as aprerequisite in the table. Though not stated explicitly, thisisthe
equivalent of aprerequisite of (A7 & B1). Similarly, A6 isnot listed on the table as having any prerequisite. But
becauseit is part of B2, it hasthe implicit prerequisite of B1.

Block B2 includes a pre-test -- A6. The student may select the pretest or take the learning activities in sequence
starting with A7. There are four objectivesin the pre-test -- J17, J18, J19, and J20. The course developer has
decided that passing an objective in the pre-test allows the student to skip the AU associated with that objective. J17
isassociated with A7, J18 with A8, and so forth. The Completion Requirements Table shows that these AUs are
considered passed when the objectives are passed. Notice in the Completion Requirements Table that the Block
(B2) isconsidered passed when A7 through A10 are passed. A6 statusis not relevant to the completion of the block.

August-16-2004 150 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

In Block B3, the AU's can be taken in any order. Passing or Completing any 4 of the six AU's results in passing the
Block. Thisisshown inthe Completions.Requirement. If the student fails A12, heisforced back to A9. Thisis
shown in the Completions for B3. After completing A9, he can again take any AU in Block B3.

AICC Course Structure File

bl ock, nenber, nenber, nenber, menmber, nenber, nenber
root, Al, Bl, B2, B3

B1, A2, A3, A4, A5

B2, A6, A7, A8, A9, Al0

B3, All, Al12, A13, Al4, Al5, Al6

AICC Prerequisites File

Structure_El enment, Prerequisite
B1, Al

A3, A2

Ad, A3

A5, A4

B2, Bl

A8, A7

A9, A8

Al10, A9

B3, B2

The student must begin with A1. Taking any AU in Block 2 requires passing Block 1. Beginning any AU in Block
3 requires passing Block 2. These rules are shown in the Prerequisites File..

AICC Objectives Relationships File

Cour se_El enent, Menber, Menber, Menber, Menber
A6, J17, J18, J19, J20

AICC Completion Requirements File.

Structure_El ement, Requirenent, Result, Next, Return

A3, A3=passed, , A4

A7, A7=passed | Jl7=passed, passed

A8, A8=passed | Jl18=passed, passed

A9, A9=passed | J19=passed, passed

A10, AlO=passed | J20=passed, passed

B2, A7=passed & A8=passed & A9=passed & AlO=passed, passed
Al2, Al2=failed, failed, A9, Al2

B3, 4*{All, Al2, A13, Al14, Al5, Al6}, passed

August-16-2004 151 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

4.5 Tracking Non-Conforming/Non-Communicating Assignable
Units in a Course

Courses may have AU’ s that are non-conforming or non-communicating (i.e. “Dumb Content”). Such AU’s have
not implemented any of the existing communication bindings and do not report datato the CMI. CMI systems are
required to support this type of content in course.

45.1 Web Environment Conformance Requirements

In web environments (Which includes HACP and API bindings), the CMI nust launch all non-conforming/non-
communicating AU’s. Since no datais reported, the CMI requirements for setting the AU’ s status or other data are
undefined. Such undefined behavior is CMI implementation specific.

Note that conforming AU’sin the APl binding may communicate but not report Core.Lesson Status. The behavior
of the CMI with regards to determining status is also undefined (and CMI implementation specific).

Future versions of this specification may define specific behaviors for bothinstances.

45.2 File-based Conformance Requirements

In the Windows environment (file-based), the CM| must launch all non-conforming/non-communicating AU’ sin the
course if such content can be “synchronously launched”. (See section5.3for adescription of a single-process
launch).

Since no dataisreported, the CMI requirements for setting the AU’ s status or other session data are undefined.
Such undefined behavior is CMI implementation specific.

Future versions of this specification may define specific behavior for this case.

August-16-2004 152 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

5.0 Communicating via Files (The File Binding)

This chapter defines the File binding to the communication data model in Chapter 2 (i.e. “file-based
communication”). It definesthe following:

The environment in which the File binding operates

How the CMI launches Assignable Units (AUS)

How the File binding is used by AUsto communicate with the CMI system.

Conformance requirements for this binding.

Which elements from the data model described in Chapter 2 may be used by the File binding (Including
which files specific elements are located in and the format of those files).

Although many of the data elementsin the communication data model have different namesin the file-based
communication, there are no new data elements appearing in this chapter.

5.1 Conceptual Model

IntheFile binding (i.e. “file-based communication”), the Assignable Unit (AU) communicates with the CMI using
text files (See figure below). The CMI system writes a*“ Startup” file (for the AU to read), launches the AU process,
suspends execution (waits) until the AU process terminates, and reads the “ Finish” file created by the AU. Based on
information obtained from the Startup file, the AU can obtain launch parameters, previous state information, and
determine where to write its Finish file (and other output files) for the CMI to read. Since datafiles are used for
communication, there are rules for when and where these data files are written, read, and deleted.

< o System > ﬁ

i Lesson Evaluation Files

P Objectives

Comments | Ejle
File

August-16-2004 153 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

5.2 Operating Environment

The operating environment for this binding is the Microsoft Windowsa Operating environment. (Other operating
environments may be included in the future).

5.3 Launching an Assignable Unit

The method for launching an Assignable Unit (AU) isasimple “synchronous’ launch. The CMI system actsasa
“Router” program and uses the operating system to launch another program (i.e. the AU), creating a new process.
Immediately prior to launch, the CMI writes a“ startup” datafile for the AU. The CMI then launches the AU and
“waits” until the AU completes execution. Upon termination of the AU’ s process, the CMI reads the text file(s)
output from the AU and resumes execution (e.g. launches next AU assigned, refreshes menu status, etc.).

This process assumes the following:
Both the CMI and AU programs are in files located on the local file system (either a disk volume provided
by aLAN fileserver or alocal disk drive.)
Both the CMI and the AU programs are local processes running on the student’s computer workstation

The launch sequence of an AU isasfollows:

1. TheCMI writesthe Startup file to a pre-determined location (see section 5.4.1)

2. The CMI launchesthe AU application using the Windows CreateProcess() function or similar
Windows function. (Thisis commonly called a Windows “command line” type launch).

3. TheCMI “waits’ until the AU application process has terminated. (The CMI monitorsthe AU process
created)

4. Asthe AU startsup, it reads the Startup file and then immediately deletesit.

5. Prior to exit the AU writes the finish file (and other evaluation files) to locations specified in the
startup file by the CMI.

6. TheAU exits

7. TheCMI readsthe Finish file and then immediately deletesit. Other evaluation files are also read (if
they exist) but are not necessarily deleted.

8. The CMI resumes execution.

AU Processes

An AU must be designed so that it can be launched in the windows (32 bit) environment using the windows
CreateProcess() function (or a similar windows “command line” function). The CMI will monitor the created
process to determine when the AU has terminated. The process created from this action may spawn other processes,
but it must be the “primary process’. The AU must close all of its other spawned processes before closing the
originating process. If an AU does not do this, then the CMI may assume that the AU has terminated before it
actually has.

CMI Launch example
The following Microsoft Visual BasicO code example shows how a CMI could synchronously launch an AU using
the technigue described above.

Synchronous Launch example
>>>> Step 1 — Use CreateProcess() Launch application <<<<<<
X = CreateProcessA(0& cndline$, 0& 0& 1& NORMAL_PRIORI TY_CLASS, 0& working$, _
NameStart, NameOf Proc)

>> Step 2 - WitforSingleChject() - Wit until primary process is termnated <<
X = Wi t For Si ngl eQbj ect (NaneCf Proc. hProcess, | NFI NI TE)

>> Step 3 — Destroy handl e to the process <<
X = O oseHandl e(NaneOf Proc. hProcess)

August-16-2004 154 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

5.4 Method of Communication

Communication between the CMI and AUs is accomplished by reading/writing text files. The filesused for this
communication are described in the table below. There are 2 file formats used for these filesCMIFormatINI and
CMIFormatCSV. The table also indicates the format for each file. See data types CMIFormatINI and
CMIFormatCSV (in section 9.0) for detailed descriptions of the formats used.

File Description
Startup File A text file written by the CMI for the AU to read at startup.
Contains AU specific launch parameters, previous state
information, and file locations for the AU to write output file(s).
(see section 5.6.1)
Finish File A text file containing information on student activity, performance,
and AU state. Written by the AU prior to exit (see section 5.6.2).
This file is the “complement” of the Startup File.

Comments File A text file written by the AU that contains comments for the
student. (See section 5.6.3)

Objectives File A text file written by the AU that contains student performance to
specific objectives (see section 5.6.4).

Path File A text file written by the AU that records the path the student user
navigated thru the AU (see section 5.6.5).

Interactions File A text file written by the AU that contains detailed information on
each student interaction measured (see section 5.6.6).

Performance File A text file written by the AU that contains Learner performance

information. (see section 5.6.7).

5.4.1 Startup File (Usage)

The Startup fileis used by the CMI system to pass datato the AU. Itistheonly “input” file created by the CMI for
the AU toread. The CMI system creates the Startup file just prior to the launch of the AU.

There are three methods available for the AU to determine the Startup file location :

1. Anadditional parameter containing the Startup file location/name isincluded in AU’s command line.

2. Thelocation of the Startup file location/nameis found in the Windows environment variable
“PARAMSCMI” (e.g. “PARAMSCM I=C\Winnt\Temp\SomeStartupFileName.ext").

3. Thelocation of the Startup fileisin the “Windows directory” with aname of “PARAM.CMI” (e.g.
“CAWINDOWSPARAM.CMI™"). The Windows directory varies by workstation, it is discovered by the
AU using the Microsoft Windows GetWinDir() function or by using the “windir” system environment
variable.. Examples of thisdirectory are "c:\windows" for Windows95/98 and "c:\winnt" for Windows NT,
ME, XP, 2000.

The CMI system must support all 3 methods of Startup file location. Typically, most AUs use method #3.

Oncethe AU Application isinitiated, it reads the Startup file created by the calling CMI system and then
immediately deletesit.

The AU obtains the following information from the CM1 viathe Startup file:
- Whereto writethe Finish File
Where to write lesson evaluation files (if any)
Launch parameters
Previous state (i.e. “Bookmarking™) information
Previous status information.

For acomplete list of data elements contained in the Startup file and its format - see section 5.6.1.

August-16-2004 155 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

5.4.2 Finish File (Usage)

The AU must create a Finish file containing data to be passed back to CMI so that the CM1 system can update its
student performance data (and perform any necessary display updates or routing activity). The CMI determines
where the Finish file isto be written by the AU. The AU discovers this |location viathe communication data
element Core.Output File which is contained in the Startup file - see section 5.6.1.

The AU writesthe Finish filejust prior to exit. The CMI system then reads the Finish file and immediately deletesiit.

The CMI obtains the following information from the AU viathe Finish file:
Status updates
AU session state (i.e. “Bookmarking”) information to store

For acomplete list of data elements contained in the Finish file and its format - see section 5.6.2.

5.4.3 Evaluation Files (Usage)
In addition to the Finish and Startup file, thereis agroup of optional files called the Evaluation Files. They are as
follows:

Comments File (see section 5.6.3)

Objectives File (see section 5.6.4)

Interactions File (see section 5.6.5)

Path File (see section 5.6.6)

Performance File (see section 5.6.7)

Thefollowing istruefor each of the evaluation files:
If the AU (and the CMI) supports the data elements contained in file, the AU will write them to the location
specified in the Startup file.
If thefile already exists, the AU appends the datato that file. If thefile does not exist, thefileis created
and the data deposited. The CMI system is responsible for management of these files.
If the AU hasthe ability to create the evaluation file(s) but the CMI does not provide afile location, then
the evaluation file(s) will not be written.

5.4.4 Error Conditions
To be determined.

August-16-2004 156 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

5.5 Conformance Requirements

Conformance to the file binding may be looked at from two viewpoints, that of the Assignable Unit (AU) and that of
the CMI. There are three levels of obligation described inthis binding specification:

- Mandatory

- Optional

- Extension

Obligations for the AU and the CMI are different.

CMI Conformance
Mandatory means that the CM| shall read, delete, and create the indicated datafile(s), properly store and use
mandatory communication data elements.

Optional means that a conforming CMI may not respond at all indicated files, or optional communication data
elements. A conforming CMI may support many options.

An extension isafile or dataelement that is not described in this specification. Extensions may be supported by a
CMI. However, extension data elements (or files) may not perform the identical function as data elements (or files)
defined in this specification; and extension data elements may not contain the same semantic values as defined data
elements. If extensions are used to duplicate mandatory and optional features, the CMI is non-conforming.

AU Conformance
Mandatory means that the AU shall read, delete, and create the indicated datafile(s), and properly store and use the
mandatory data elements.

Optional means that the AU may read or create data elementsin the indicated datafile(s), and properly store and use
the data elementsindicated as optional.

An extension isafile or dataelement that is not described in this specification. Extensions may be supported/used
by an AU. However, extension data elements (or files) may not perform the identical function as data elements (or
files) defined in this specification; and extension data elements may not contain the same semantic values as defined
data elements. If extensions are used to duplicate mandatory and optional features, the AU is non-conforming.

5.5.1 CMI Responsibilities

Launch and Communication
The CMI system shall do the following to launch an AU:
1. WriteaStartup File
2. Synchronously launch the AU application (i.e. launch and “wait”) using the operation system
3. Monitor the AU process until termination
4. Readtheresulting Finish File
5. Deletethe Finishimmediately after reading it contents

The CMI shall support all 3 mechanisms of Startup file location (described in section 5.4). The CMI must support
all the data elements described for this binding as mandatory (described in section 5.6). The CMI may support the
optional data elements (andfiles). The CMI may also support extensions not defined in this specification as long as
those extensions do not duplicate any mandatory or optional features. Additionally, the support of any extensions
must not cause the failure of any AU not using the extensions.

August-16-2004 157 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Sequencing
An AU assignable unit may only be launched by aCMI. An AU may not itself launch other assignable units. An
assignable unit must, at a minimum, be able to:

1. Besynchronously launched (as described in sections5.3 and 5.4)

2. Read, write, and delete the required communication file(s) (as described in sections 5.3 and 5.4)

Flow control — moving from one the AU object to another — is assumed to be the responsibility of the CMI and not
within the assignable unit (AU) itself. Thisis conceptually important because AU reuse cannot really happen if the
AU has embedded information that is context specific to the course. In this context, flow control means that the
decision of what AU (the AU) will next be presented to the student is made by the CMI. (This recognizesthat some
AU’s may make decisions—that is, branch — within itself, but that kind of internal flow is hidden from the CM1.)

The determination of which AU(s) the student is routed to is determined solely by the CM1 and is defined in large
part by the Course Structure description (Chapter 3). Chapter 3 defines information about the AU that is context
specific to the course (e.g., the default sequence of AU’s, and prerequisites or completion requirements that might
alter the delivery path.)

5.5.2 Assignable Unit (AU) Responsibilities

Launch and Communication

An assignable unit must, at a minimum, be able to do the following:
1. Havetheability to be synchronously launched (as described in sections5.3 and 5.4)
2. Read (and delete) the Startup File, and write the Finish file(as described in sections 5.3, 5.4, and 5.6)
3. Support all the following communication data elements (listed in the tables bel ow)

Startup File — AU mandatory data elements

Group Name or Keyword Communication Data Model Name Section
[Core] Core 2.1
Output_File Core.Output File 2.1.3

Finish File— AU mandatory data elements

Group Name or Keyword Communication Data Model Name Section
[Core] Core 2.1
Lesson_Location Core.Lesson Location 2.1.4
Lesson_Status Core.Lesson Status 2.1.6
Score Core.Score 2.1.10
Time Core.Session_Time 2.1.12

Sequencing
An AU may not itself launch other assignable units

August-16-2004 158 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

5.6 Communication Data Model Mapping

This section contains the mapping of the communication data model elements (defined in section 2.0) to thefile
(file-based communication) binding. The contents of these files are defined in this section. Thefiles used for
communication are as follows:

Startup File

Finish File

Comments File

Objectives File

Path File

Interactions File

Performance File

The following is defined for each of the abovefiles:
A description of thefile’'s purpose
A list of communication data model elements used
Thefile'sdataformat
An example

5.6.1 Startup File

Purpose
The Startup fileis used by the CMI system to pass datato the AU. (Seesection 5.4.1).

Data Model Elements

The following table describes the Group and Keywords used by the Startup file with corresponding data model
names, references, and Mandatory/Required designations. For specific usage of adata element refer to the
corresponding section in the Chapter 2.0 Communication Data Model . Note that n indicates an array index.

Group Names and
Keywords Communication Data Model Name Section | CMI Obligation
[Core] Core 21 Mandatory
Student_ID Core.Student Id 211 Mandatory
Student_Name Core.Student Name 2.1.2 Mandatory
Output_File Core.Output File 2.1.3 Mandatory
Lesson_Location Core.Lesson Location 214 Mandatory
Credit Core.Credit 215 Mandatory
Lesson_Status Core.Lesson Status 2.1.6 Mandatory
Core.Entry 2.1.8 Mandatory
Path Core.File Path 2.19 Mandatory
Score Core.Score 2.1.10 Mandatory
Core.Score.Raw 2.1.10 Mandatory
Core.Score.Max 2.1.10 Mandatory
Core.Score.Min 2.1.10 Mandatory
Time Core.Total_Time 2.1.12 Mandatory
Lesson_Mode Core.Lesson Mode 2.1.13 Optional
Core_Lesson] Suspend Data 2.1 Mandatory
Core Vendor] Launch Data 2.3 Mandatory
Comments] Comments From LMS 2.6 Optional
Evaluation] Evaluation 2.7 Optional
Course_ID Evaluation.Course 1D 272 Optional
Comments_File Evaluation.Comments_File 2.7.1 Optional
Interactions_File Evaluation.Interactions_File 2.7.3 Optional
Objectives_Status_File Evaluation.Objective_Status_File 274 Optional
Path_File Evaluation.Path_File 275 Optional
Performance File Evaluation.Performance File 2.7.6 Optional

August-16-2004

159

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Group Names and
Keywords Communication Data Model Name Section | CMI Obligation
[Objectives_Status] Objectives 2.8 Optional
J ID.n Objectives.ID 281 Optional
J_Score.n Objectives.Score 282 Optional
Objectives.Score.Raw 2.8.2 Optional
Objectives.Score.Max 2.8.2 Optional
Objectives.Score.Min 2.8.2 Optional
J_Status.n Objectives.Status 2.8.3 Optional
[Student_Data] Student Data 2.9 Optional
Attempt_Number Student Data.Attempt Number 29.1 Optional
Mastery_Score Student Data.Mastery Score 2.9.3 Optional
Max_Time_Allowed Student Data.Max Time Allowed 293 Optional
Time_Limit_Action Student Data.Time Limit Action 294 Optional
Student Data.
Lesson_Status.n Student Data.Sessions Journal.Lesson Status 29.7.2 Optional
Score.n Student Data.Sessions Journal.Lesson Score 29.71 Optional
.Raw 29.71 Optional
.Max 29.71 Optional
.Min 29.7.1 Optional
[Student_Demographics] Student Demographics 2.13 Optional
City Student Demographics.City 2131 Optional
Class Student Demographics.Class 2.13.2 Optional
Company Student Demographics.Company 2.13.3 Optional
Country Student Demographics.Country 2.13.4 Optional
Experience Student Demographics.Experience 2135 Optional
Familiar_Name Student Demographics.Familiar Name 2.13.6 Optional
Instructor_Name Student Demographics.Instructor Name 2.13.7 Optional
Job_Title Student Demographics.Title 2.13.12 Optional
Native_Language Student Demographics.Native Language 2.13.8 Optional
State Student Demographics.State 2.13.9 Optional
Street_Address Student Demographics.Street Address 2.13.10 Optional
Telephone Student Demographics.Telephone 21311 Optional
Years_Experience Student Demographics.Years Experience 2.13.13 Optional
[Student_Preferences] Student Preference 21 Optional
Audio Student Preference.Audio 2.10.1 Optional
Language Student Preference.Language 2.10.2 Optional
Lesson_Type Student Preference.Lesson Type 2.10.3 Optional
Speed Student Preference.Speed 2104 Optional
Text Student Preference.Text 2.10.5 Optional
Text_Color Student Preference.Text Color 2.10.6 Optional
Text_Location Student Preference.Text Location 2.10.7 Optional
Text_Size Student Preference.Text Size 2.10.8 Optional
Video Student Preference.Video 2.10.9 Optional
Window.1 Student Preference.Windows 2.10.10 Optional
File Format

The Startup file is text formatted as datatype CMIFormatINI. (see section 9.0 - Datatypes)

Example

An example of atypical Startup fileis show below

Startup File example

; Startup File

August-16-2004

[Core]
; Comment
Student _| D = XYZ_1234
St udent _Nanme = Hyde, Jackson Q
Qut put _File = C\Wndows\ Tenp\ out param cmi
Lesson_Location = 45
Credit = CRED
Lesson_Status = | NCOMPLETE
Score =
Ti me = 0000: 04: 30. 34
Lesson_Mbde = Nor nal
160 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Startup File example

[CORE_LESSON|

[Cor e_Vendor]
45,67,78, RR

[Eval uati on]
Course_ID = {}
Comments_File

Path_File

[St udent _Dat a]
Mastery_Score =

My Start up paraneters

Interactions_File
hj ectives_Status_File

Per f or mance_Fil e

; Core_lesson is free-formgroup

End of My startup paraneters

ny lesson state data — 1111111111111111111000000000000000000000000

111111112121111111111000000000000000000000000 — end ny | esson state data
; Core_vendor is also a free-formgroup

5.6.2 Finish File

Purpose

The Finish fileis used by the AU to pass data to the CMI. (Seesection 5.4.2).

Data Model Elements

The following table describes the Group and Keywords used by the Finish file with corresponding data model
names, references, and Mandatory/Required designations. For specific usage of a data element refer to the
corresponding section in the Chapter 2.0 Communication Data Model . Note that n indicates an array index.

August-16-2004

161

Eroup Names and Communication Data Model Name Section | CMI Obligation
eywords
[Core] Core 21 Mandatory
Lesson_Location Core.Lesson Location 214 Mandatory
Lesson_Status Core.Lesson Status 2.1.6 Mandatory
Core.Exit 2.1.7 Mandatory
Score Core.Score 2.1.10 Mandatory
Core.Score.Raw 2.1.10 Mandatory
Core.Score.Max 2.1.10 Mandatory
Core.Score.Min 2.1.10 Mandatory
Time Core.Session_Time 2.1.12 Mandatory
Core_Lesson] Suspend Data 2.1 Mandatory
Comments] Comments From Learner 2.4 Optional
Objectives_Status] Objectives 2.8 Optional
J ID.n Objectives.ID 2.8.1 Optional
J_Score.n Objectives.Score 2.8.2 Optional
Objectives.Score.Raw 2.8.2 Optional
Objectives.Score.Max 2.8.2 Optional
Objectives.Score.Min 2.8.2 Optional
J_Status.n Objectives.Status 2.8.3 Optional
[Student_Data] Student Data 2.9 Optional
Tries_During_Lesson Student Data.Tries During Lesson 2.9.5 Optional
Try_Score.n Student Data.Tries.Try_Score 2.9.2 Optional
Try_Time.n Student Data.Tries.Try_Time 2.9.2 Optional
Try_Status.n Student Data.Tries.Status 2.9.2 Optional
[Student_Preferences] Student Preference 21 Optional
Audio Student Preference.Audio 2.10.1 Optional

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Eroup Names and Communication Data Model Name Section [CMI Obligation

eywords
Language Student Preference.Language 2.10.2 Optional
Lesson_Type Student Preference.Lesson Type 2.10.3 Optional
Speed Student Preference.Speed 2.10.4 Optional
Text Student Preference.Text 2.105 Optional
Text_Color Student Preference.Text Color 2.10.6 Optional
Text_Location Student Preference.Text Location 2.10.7 Optional
Text_Size Student Preference.Text Size 2.10.8 Optional
Video Student Preference.Video 2.10.9 Optional
Windown Student Preference.Windows 2.10.10 Optional

File Format

The Finish file is text formatted as datatype CMIFormatINI. (See section 5.4.1 and Chapter 9.0 - Datatypes)

Example

An example of atypical Finish fileis show below:

Finish File example

* Finish File

[Core]
Lesson_Locati on
Lesson_Status =
Score
Tinme = 00:02: 30

C

[CORE_LESSON|

[COVMENT]

<1><L. Slide#2> This slide has the fuel

87

ny lesson state data — 1111111111111111111000000000000000001110000

1111111222222221111100000000000111000000000 — end ny | esson state data

listed in the wong units <e.1>

5.6.3 Comments File

Purpose

Thisfile contains freeform feedback from the student (recorded by the AU). It isaduplicate of the [Comments]
group that is passed to the CMI system in the Finish file. If aCMI system receives data from the AU in both
[Comments] group and the Comments File, the CMI must save the data from the Comments File and discard the

[Comments] group data.

Data Model Elements

The following table identifies the Comment File's Fields, Data Model Names, and Data Model Section reference.

CSV File Field Identifier Communication Data Model Name Section
Course_|D Itemized Comments From Learner.Course ID | 2.5.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Itemized Comments From Learner.Lesson_ID | 2.14
Date Itemized Comments From Learner.Date 253
Time Itemized Comments From Learner.Time 2.5.7
Location Itemized Comments From Learner.Location 2.5.6
Comment Itemized Comments From Learner.Content 251

August-16-2004

162

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

File Format

The Comments file is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 — Datatypes
for adetailed description of formatting rules) . All CSV File Field Identifierslisted above must be present in the
header row, even if a specific field is not supported/used by the CMI. All unsupported data elements are represented
as empty strings. Notethat field identifiersidentify field position (i.e. “columns”) in arecord (i.e. “row”) and can be
in any order. Custom fields may be added to support vendor specific extensions but these must have corresponding
field identifiersin the header row and must not duplicate or conflict with existing fields' functionality.

Example
An example of atypical Commentsfileis show below:

Comments File example
Location ,Comment , Course_ID, Student_ID, Lesson_ID, Date, Tine
Slide #6, “The color of indicator is wong”, APU101, User 03, APU START4, 2003/01/23 , 12:45:45
Slide #6, “The color of indicator is wong”, APUL01, User 03, APU START4, 2003/01/23 , 12:45:45

5.6.4 Interactions File

Purpose

All of theitemsin thisfile are related to arecognized and recorded input from the student (recorded by the AU).
Normally, the interactions recorded are student responses to a question. (See sectionslisted in table below for
description of the data elements recording student interactions)

Data Model Elements
Thefollowing table identifies the Interactions File' s Fields, Data Model Names, and Data Model Section reference.

CSV File Field Identifier Communication Data Model Name Section
Course_|D Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Lesson_ID 2.14
Date Interactions.Date 2.11.3
Time Interactions.Time 2114
Interaction ID Interactions.|D 211.1
Objective ID Interactions.Objectives 2.11.2
Type Interaction Interactions.Type 2115
Correct Response Interactions.Correct Responses 2.11.6
Student Response Interactions.Student Response 2.11.8
Result Interactions.Result 2.11.9
Weighting Interactions.Weighting 2.11.7
Latency Interactions.Latency 2.11.10

File Format

The Interactionsfileistext formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 — Datatypes
for adetailed description of formatting rules) . All CSV File Field Identifierslisted above must be present in the
header row, even if a specific field is not supported/used by the CMI. All unsupported data elements are represented
asempty strings. Notethat field identifiersidentify field position (i.e. “columns’) in arecord (i.e. “row”) and can be
in any order. Custom fields may be added to support vendor specific extensions but these must have corresponding
field identifiersin the header row and must not duplicate or conflict with existing fields' functionality.

Example

An example of atypical Interactionsfileis show below:

Interactions File example
"course_id","student _id", "l esson_id","date","tine","interaction_id", "objective_id",
"type_interaction", "correct_response", "student _response","result", "wei ghting", "l atency"”
"A340ft-2","j gh085", " APUL", "2004/ 01/ 15", " 15: 14: 23", 37, ft 1016, C, A, C, W, 00:00: 3
"A340ft- 2", "wan016", "APUL", "2004/ 01/ 15", " 15: 14: 23", 38, ft 2223,t,t,t,,, 00:00: 01
"A340ft- 2", "dag085", "APUL", "2004/ 01/ 15", "15: 14: 23", 39, ft 1134, C, B, B, C,, 00: 00: 02
"A340ft-2","trd018", "APUL", "2004/ 01/ 15", "15: 14: 23", 40, ft 1156, C,C, C, C,, 00: 00: 04

August-16-2004 163 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

5.6.5 Objectives Status File

Purpose

Thisfile contains information on how the student has performed on objectivesrelated to the AU. The performance
may be related to previous sessionsin the AU, or to the student user’ s performance in other AU’ s (in the same
course) related to the same objectives. These objectives are only those associated with the current launching AU,
not all the objectivesin the course or curriculum.

Data Model Elements
The following table identifies the Objective Status File's Fields, Data Model Names, and Data Model Section
reference.

CSV File Field Idenifier Communication Data Model Name Section
Course_|D Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Lesson_ID 2.14
Date Objectives.Date 2.8.4
Time Objectives.Time 2.85
Obijective ID Objectives.ID 2.8.1
Score Objectives.Score 2.8.2
Status Objectives.Status 2.8.3
Mastery Time Obijectives.Mastery Time 2.8.6

File Format

The Objectives Statusis text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 —
Datatypes for a detailed description of formattingrules). All CSV FileField Identifierslisted above must be
present in the header row, even if aspecific field is not supported/used by the CMI. All unsupported data elements
are represented as empty strings. Notethat field identifiersidentify field position (i.e. “columns”’) in arecord (i.e.
“row”) and can bein any order. Custom fields may be added to support vendor specific extensions but these must
have corresponding field identifiersin the header row and must not duplicate or conflict with existing fields'
functionality.

Example

An example of atypical Objectives Statusfileis show below:

Objectives Status File example
COURSE_I D, STUDENT_ID, LESSON ID, DATE , TIME, OBJECTIVE |ID, SCORE, STATUS,
MASTERY_TI ME
"MD8O- 2", " STUL009", " APU1", " 1994/ 01/ 15", " 10: 14: 23", " APU1684", 3,, "passed", "00: 02: 37"

5.6.6 Path File

Purpose

To provide a mechanism to record the “ paths” a student use took during AU session(s). The pathsrecorded are
generally the order in which the student navigates through the AU. (See sectionslisted in table below for
descriptions of the data elements recording path information)

Data Model Elements
The following table identifies the Path File s Fields, Data Model Names, and Data Model Section reference.

CSV File Field Identifier Communication Data Model Name Section
Course_|D Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1

August-16-2004 164 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

CSV File Field Identifier Communication Data Model Name Section
Lesson_ID Lesson_ID 2.14
Date Paths.Date 2.12.2
Time Paths.Time 2.12.3
Element Location Paths.Location ID 2121
Status Paths.Status 2124
Why_Left Paths.Why Left 2.125
Time_in_Element Paths.Time in Element 2.12.6

File Format

The Path file is text formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 — Datatypes for a
detailed description of formatting rules) . All CSV File Field Identifierslisted above must be present in the header
row, even if aspecific field is not supported/used by the CMI. All unsupported data elements are represented as
empty strings. Note that field identifiersidentify field position (i.e. “columns”) in arecord (i.e. “row™) and can bein
any order. Custom fields may be added to support vendor specific extensions but these must have corresponding
field identifiersin the header row and must not duplicate or conflict with existing fields' functionality.

Example

An example of atypical Path fileis show below:

Path Status File example

course_id, student_id, lesson_id ,date, tinme, elenment_location , status ,
why_left , tine_in_element

"course6", "stu2310", "first1","2003/ 06/ 05", "14: 10: 31", "A","P","S", "00: 00: 24"
"course6", "stu2310", "first1", "2003/ 06/ 05", "14: 10: 55", "E","P","S", "00: 01: 06"
"course6", "stu2310","first1", "2003/ 06/ 05", " 14: 12: 01", "A","I","L", " 00: 02: 24"
"course6", "stu2310", "first1", "2003/ 06/ 05", "14: 13: 25", "B","P","S", "00: 00: 54"
"course6", "stu2310", "first1", "2003/ 06/ 05", " 14: 14: 19", " D", "P","L", " 00: 02: 40"
"course6", "stu2310", "first1", "2003/ 06/ 05", " 14: 16: 59", "E","P","S", "00: 03: 03"
"course6", "stu2310", "first1", "2003/ 06/ 05", " 14: 20: 02", "F","P","E", " 00: 02: 12"

5.6.7 Performance File

Purpose
To record simulation-specific datafrom AU session(s) for later analysis.

Data Model Elements
Not applicable. The performance file datais devel oper-defined.

File Format
The Path file istext. The formatting of this text is devel oper-defined.

Example
Not applicable.

August-16-2004 165 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

6.0 Communicating via HTTP (The HACP BindingQ)

This chapter definesthe HTTP/S-based AICC/CMI Protocol (HACP) binding to the communication data model in
Chapter 2.0. It definesthe following:

The environment in which the HACP binding operates

How the CMI launches Assignable Units (AUS)

How the HACP hinding is used by AUs to communicate with the CMI system. (Using HTTP/S messages)
Conformance requirements for this binding.

Which elements from the data model described in Chapter 2.0 may be used by the HACP binding
(Including the HTTP/S messages specific elements are located in and the format of those HTTP/S

messages.)

Although many of the data elements in the communication data model have different namesin the HACP binding,
there are no new data elements appearing in this chapter.

6.1 Conceptual Model

In the HACP binding, the Assignable Unit (AU) communicates with the CM| using a series of HTTP/S messages
(Seefigure below). The assignable unit (AU) islaunched by the CMI redirecting the web browser to aURL. The
AU always initiates the communication with a message to get data or send datato the CMI. The CMI listens for and
responds to message requests from the AU. For every AU “request” message thereisa CMI “response” message.

HTTPis client/server protocol. Thereisaclient program (usually a Web Browser) making requests and a server
program (a Web Server) responding to the requests. With HTTP/S protocol, client and server programs may be
running on the same computer or on different computers at different locations. Some portions of the CMI run as
part of the Web Server (i.e. an HTTP/S server) and other portions (The student User interface) run as part of the
Web Browser (Thisisalso true for assignable units).

Assignable Unit

Request Messaae
Message

I

CMI System

August-16-2004 166 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

6.2 Operating Environment

The operating environment for thisbinding isthe HTTP (Hyper-Text Transfer Protocol) client and server
environment(s) (including Secure HTTP [ak.a. HTTPS]). TheHTTP “client” istypically aweb-browser. Please
refer to following document for more information about HTTP: RFC 1945 — Hypertext Transfer Protocol —
HTTP/1.0.

6.3 Launching an Assignable Unit

The CMI provides an interface for the learner. The CMI launches the AU by dynamically appending parameters to
URL (Uniform resource locator) where the AU islocated and directing the web browser to launch this specially
modified URL.

This process assumes the following:
The CMI user interface is operating within a web-browser
The AU isinitiated from the web browser

The launch sequence of an AU isasfollows:

1. Student selects an Assignable Unit (AU) to launch from the CM I’ s user’ sinterface (Menu)

2. The CMI appends startup parametersto the URL location of the AU and directs the web-browser to this
“modified” URL (see 6.3.1 The“Launch URL"” - below).

3. TheAU starts execution and retrieves the Query String from the web-browser, parses the startup parameters and

sends a message to the CMI requesting startup and/or previous state data. Thismessageis called a“ GetParam”

(see section 6.4.4). The “GetParam” message is always the first message issued by the AU.

The CMI receivesthe “ GetParam” request and sends startup data.

5. During the rest of the AU session, the AU sends message(s) CMI reporting student performance. These
messages are the “PutParam” message (see section 6.4.5) and other “ optional” messages (see section 6.4.6). The
AU must send at least one “ PutParam” message prior to exit.

6. Just prior to exiting, the AU sends a message to the CMI indicating that the AU session has terminated. This
messageis called a“ExitAU” (see section 6.4.7)

»

6.3.1 The “Launch URL"

The Launch URL isdynamically created by the CMI in order to launch the AU. The structure of the launch URL is
asfollows:

{URL to Assignable Unit}?{CMI generated query string}

The (CMI generated) query string is separated from the Assignable Unit's URL by “?" (Question mark). The URL
to the AU isthe value of Course Elements.Filenamecorresponding to the AU in the course structure (see section
3.4.7).. The query string is composed of name/value pairs (i.e. name=value) separated by ampersands (“&"s). All
values are url-encoded (see section 6.4.1.1) and must be url -decoded prior to interpretation. The value of Course
Elements.Web Launch Parametersis appended to the CM I generated querystring.

August-16-2004 167 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

The query string has the following structure:

aicc_sid={CMI generated session ID}&aicc_url={URL to receive AU messages}&[AU specific launch parameters }

AU specific launch parameters are obtained by the CMI from the coursestructure from Course Elements.Web
Launch Parameters data element (for the AU being launched). See section 3.4.14 for description and format. The

other name/value pairsin the query string are described in the table below:

L aunch parameter (Name/V alue pairs) generated by the CM|

- Value Data Type N

Name Value Usage/Description (see Datatypes 9.0) Obligation
AICC_SID A string generated by the CMI (prior to AU CMiIldentifier Mandatory

launch) that uniquely identifies the AU session (URL- Encoded)

among all other active AU sessions The

Assignable Unit uses this value to identify its

session when making requests to the CMI

system.

This value must be contained in request

messages made by the AU. (See section 6.4.2)
AICC_URL The URL where the AU is to send its HACP CMlurl Mandatory

request messages. (URL- Encoded)

August-16-2004

168

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

6.4 Method of Communication

The method of communication utilizes specially formatted HTTP messages. HTTP is a symmetric protocol. For
every request, thereisaresponse. The AU sends “request” messages to the CMI and the CMI sends “response”
messages back. The AU initiates all communication to the CMI. There are 8 types of request messages that an AU
can make to the CMI, they are described in the table below.

HACP Description
Message Type
GetParam In response to this AU request message the CMI sends a response

message that contains AU specific launch parameters, previous state
information, and a acknowledgement (see section 6.6.1)

PutParam This AU request message sends information on student activity,
performance, and AU state to the CMI system. The CMI receives this
information and send an acknowledgement as a response. (see section
6.6.2).

PutComments This AU request message sends information that contains written
“comments” made by the student to the CMI system. The CMI receives
this information and sends an acknowledgement as a response. (see
section 6.6.3).

PutObjectives This AU request message sends information that contains student
performance (to specific objectives) to the CMI system. The CMI receives
this information and sends an acknowledgement as a response. (see
section 6.6.4).

PutPath This AU request message sends information to the CMI with regards to the
path the student user navigated thru the AU to the CMI system. The CMI
receives this information and sends an acknowledgement as a response.
(see section 6.6.5).

Putlnteractions This AU request message sends information that contains detailed data on
each student interaction measured to the CMI system. The CMI receives
this information and sends an acknowledgement as a response. (see
section 6.6.6).

PutPerformance This AU request message sends information that contains Learner
performance information to the CMI system. The CMI receives this
information and sends an acknowledgement as a response. (see section
6.6.7).

ExitAU This AU request message sends this message to terminate the AU
session. The CMI receives this message and sends an acknowledgement
as a response. (see section 6.6.8).

HACP M essage Sequence Rules
In a (HACP) communication session with the CMI, the AU must meet the following message sequence rules:

Rule#1 - The first HACP message i ssued must be a GetParam.

Rule#2 - The last HACP message issued must be an ExitAU.

Rule #3 - At least one PutParam message must be issued prior to an Exit AU message.
Rule#4 - No HACP messages can be issued after a successfully issued ExitAU message.

6.4.1 HACP Transport Mechanism

All HACP messages are sent/received using HTTP/S protocol. (See RFC1945 for a detailed description of HTTP
protocol.) The HACP message data are contained in the "entity-body" of HTTP request and response messages.

The AU isthe“client” (initiates all communication) and the CMI isthe “server” (respondsto requests). The AU
sends messages to the URL location indicated in the “AICC_URL” launch parameter. (See section 6.3). The
“AlICC_SID” launch parameter (also in Section 6.3) is used by the AU in the body of request messages to identify
the AU session to the CMI.

August-16-2004 169 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

AU request messages are sent to the CMI system via HT TP messages using the POST method (the GET method is
not allowed for HACP communication). The content-type of request messages is “ application/x-www-form-
urlencoded”.

The CMI respondsto a HTTP/POST message with a HT TP response message. The content-type of response
messages is “text/plain”.

6.4.1.1 URL-Encoding/Decoding

All name/value pairsin HACP request messages (see section 6.4.2) and URL launch parameters (see section 6.3.1)
require that values (and sonretimes names) be url-encoded. Url-encoding is used for data transport purposesonly.
Once url-encoded datais received/read, it must be url-decoded prior to interpreting the data.

Therulesfor url-encoding are as follows:

Rule#1 - Spacesare converted to the”+" (Plussign) or “%20”

Rule#2 - All “unsafe”’ characters, control characters, and “upper ASCII” characters (see table below) must
always be encoded in an escape sequence. An escape sequenceisa“%” (percent sign) followed
by 2 hexadecimal digits. The BNF notation (see sections 10.0 and 10.2) for an escape sequence
isasfollows:

“9 HEX HEX

For example, “%3F” would represent a url-encoding of “?” (Question mark) character.

Table of ASCII characters that must be encoded

Characters BNF Notation
That must be encoded (see sections 10.0 and 10.2)

Unsafe Characters A N
R I A S 0 A R BN Rt
ST | <>

Control Characters CTL

“Upper ASCII” characters EXTENDED

(per 1ISO-8859)

Rule #3 - Any other characters may be encoded in an escape sequence (if desired).
Therulesfor url-decoding are as follows:

Rule#1 - “+” (Plussigns) are converted to spaces

Rule#2 - All characters encoded in escape sequences must be decoded.

Rule#3 - All other characters remain unchanged.

August-16-2004 170 CMI001 Version 4.0

6.4.2

AICC - CMI Guidelines for Interoperability

HACP Request Message Format

HACP request message are HT TP request messages with the following properties:

The content-typeis “ application/xwww-form-urlencoded”. This content-type follows a convention called
“name/value pairs’. The name is separated from the value by “=' and name/value pairs are separated from each

other by "&'. (e.g. namel=value2& name2=value?). All names and values are url-encoded (see section 6.4.1.1).

The entity-body is composed of the following name/value pairs (depicted in the table below):

Name/Value pairsin a HACP request message

corresponding value for Course Elements.AU
Password (See 3.4.15) in the course structure.

(URL encoded)

Name Value Usage/Description Value Data Type Obligation
(see Datatypes 9.0)
command Defines request message type. HacpCommand Mandatory
(URL encoded)
version Version of the CMI Specification. CMIVersionNumber Mandatory
(URL encoded)
session_id This is a string that uniquely identifies the AU CMIidentifier Mandatory
session among all other active AU sessions The (URL encoded)
Assignable Unit uses this value to identify its
session when making requests to the CMI
system.
The value used for session_id is passed to the
AU by the CMI via the AICC_SID launch
parameter. (See section 6.3.1)
AU_password AU specific password. This value must match the | CMIString255CSV Optional

AICC_Data

Data being sent to the CMI system.

See AICC_Data format
for each message in
section 6.6.

(URL encoded)

Mandatory for all
messages except
GetParam and ExitAU

Additional usage rulesfor the name/value pairsin the entity-body are asfollows:
All names and values are url -encoded.
Values must url-decoded prior to use.
All names are case-insensitive.
Each of the name/value pairs can be in any sequence
If an optional value isto be omitted, the name must also be omitted.

Thefollowing is an example of a GetParam request message (See section 6.6 for examples of each message type):

GetParam Reguest M essage- example

command=get par antver si on=4%2EO0&sessi on_i d=xyz123

6.4.3

HACP Response Message Format

HACP response message are HT TP response messages with the following properties:

The content-type is “text/plain”.

Thedataisarranged in format similar to “name/value pairs’. The name is separated from the value by “=" and

name/value pairs are separated from each other by carriage return/linefeed end-of-line markers (e.g. namel=valuel{
carriage return/linefeediname2=value2). The order of the name/value pairsis significant.

August-16-2004

171

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

The entity-body is composed of the following name/value pairs (depicted in the table below):

Name/Value pairsin a HACP response message

Name Value Usage/Description E/SaltleltjeeDg?;?yPézeg.O) Obligation

error Error Number HacpErrorNumber Mandatory

error_text Error description HacpErrorText Optional

version Version of the CMI Specification. CMIVersionNumber Optional

aicc_data Data sent from the CMI system. See section 6.6.1 CMIFormatINI Mandatory only for
GetParam messages

Thefollowing (additional) usage rules apply to response message format:
Leading and trailing white space (Tab, space) is allowed before and after the name, valueand “=" (equals
sign).
The value data of aicc_data begins as the first non-white space character after the “=" and continues until
the end of the entity-body buffer.
Thevaluefor all other names begins as the first non-white space character after the “=" and continues until
the last non-white character before the carrige return/linefeed.
The order of the name/value pairsis significant.
The name, in the name/value pair is not case sensitive.
If an optional value isto be omitted, the name must also be omitted.

See HACP_RESPONSE in section 10.4 for BNF notation depicting a HA CP response message format

Thefollowing is an example of a GetParam response message (See section 6.6 for examples of each message type):

GetParam Response Message- example

error=0

error_t ext=Successful

ai cc_dat a=

[Core]
Student _| D = XYZ_1234
St udent _Nanme = Hyde, Jackson Q
Lesson_Location = 45
Credit = CRED'T
Lesson_Status = | NCOMPLETE
Score =
Time = 00: 04: 30

[CORE_LESSON]

ny lesson state data — 1111111111111111111000000000000000000000000

11111111211111111111000000000000000000000000 — end ny | esson state data

[Cor e_Vendor]

My Start up paraneters
45, 67,78, RR
End of My startup paraneters

[Eval uati on]
Course_ID = {}

[St udent _Dat a]
Mastery_Score = 100

August-16-2004 172 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

6.4.4 GetParam Request

The GetParam request message is used by the CMI system to pass datato the AU. Itisthe only request message
that the CMI returns actual data (in addition to simple message acknowledgement) for the AU to read.

The AU must issue the GetParam request prior to any other messagesin an AU session.

The AU obtains the following information from a CM|I response to a GetParam request:
Launch parameters
Previous state (i.e. “book marking”) information
Previous statusinformation.

Typically, an AU will issue only one GetParam request during an AU session. However, an AU may issue
additional GetParam requests prior to session end. If an AU issues multiple GetParam requests (during an AU
session), the following rules apply:

Rule#1 - If aGetParam request isissued after a PutParam request, the GetParam response will include
updated val ues for the following communication data elements (if set by the PutParam request):
Suspend_Data (see section 2.10)
Core.Lesson Location (seesection 2.1.4)
All other data elements contained the GetParam response remain static during an AU session.

For acomplete list of data elements contained in the GetParam responses message and the format of both request
and response - see section 6.6.1.

6.4.5 PutParam Request

The PutParam request is used to report datato the CMI. The AU must issue a PutParam request containing data to
be passed back to CM|I so that the CMI system can update its student performance data (and perform any necessary
display updates or routing activity).

The AU must issue at |east one PutParam request prior to end of the AU session.

The CMI receives the following information from the AU viathe PutParam Request:
Status updates
AU session state (i.e. “Book marking”) information to store

Typically, an AU will issue only one PutParam request during an AU session. However, an AU may issue
additional PutParam requests prior to session end. If an AU issues multiple PutParam requests (during an AU
session), the following rules apply:

Rule#1 - Additional PutParam requests replace the data from prior PutParam requests. Only the datain the
final PutParam request is recorded by the CM| and used to evaluate the AU session results.

For acompletelist of data elements contained in the PutParam request message and the format of both the request
and response messages - see section 6.6.2.

6.4.6 Optional Messages

In addition to GetParam and PutParam messages, there is a group of optional request messages that an AU may
send. These request messages are as follows:

PutComments (see section 6.6.3)

PutObj ectives (see section 6.6.4)

August-16-2004 173 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Putlnteractions (see section 6.6.5)
PutPath (see section 6.6.6)
PutPerformance (see section 6.6.7)

Thefollowing istrue for each of the above request messages:
- If the AU supports the data elements defined for any of the above request messages, the AU will send that
request message to the CMI system.
If CMI receives any of the above messages, it will send response message to the AU even if it does not
support any of the data elements contained in the message.
If multiple messages are made during the an AU session, all new datais“additive” and stored by the CMI.
Datathat is duplicated in multiple messages during an AU session is discarded by the CMI.

6.4.7 ExitAU Message

The AU must issue an ExitAU request to notify the CMI system that the AU session isover. The ExitAU isthelast
message that isissued in an AU session. For the format of both the ExitAU request and response messages - see
section 6.6.8.

6.4.8 Error Conditions

Error handling isan AU responsibility. Every response message (provided by the CMI) will contain an error code.
There are 4 HACP error conditions currently defined. They are indicated in the table below. All AU corrective
action isimplementation dependent (possible actions depicted below are provided for information only).

HACP Error Conditions

Error_Code | Error_Text Description Possible AU corrective
action

0 Successful Message successfully received by the CMI None.
system

1 Invalid Command The message type was not valid. (See Try again with a valid message
datatype HacpErrorCommand in section type. If error persists display
9.0 for legal vocabulary.) error message to user.

2 Invalid AU password The AU had a Password associated with it Display message to user that
(See Course Elements. AU Password) in password is incorrect and to
the course structure and the AU failed to contact technical/admin
issued a matching value in the request support.
message.

3 Invalid Session ID The AU did not provide the proper Send message again.
AICC_SID (see section 6.3) for the AU If error persists display
session. The AU either was unable to message to user that
parse the Launch parameters properly or AICC_SID is incorrect and to
the CMI provided an invalid AICC_SID. contact technical/admin

support.

Since HACP is based on HTTP/S protocol, HT TP-specific errors may also occur (such as server “time-out”, etc.). In
this case, the HT TP response message may come directly from the HTTP server (instead of avalid HACP response

from the CMI). See RFC1945 for possible HTTP server error codes, their meaning, and the format of the HTTP
error response message.

August-16-2004

174

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

6.5 Conformance Requirements

Conformance to the HACP binding may be looked at from two viewpoints, that of the Assignable Unit (AU) and
that of the CMI. There arethreelevels of obligation described in this binding specification:

- Mandatory

- Optional

- Extension

Obligations for the AU and the CMI are different.

CMI Conformance
Mandatory means that the CMI shall receive all HACP messages, send an acknowledgement of receipt of those
messages (or send data el ements requested by the AU), and properly store and use mandatory data elements.

Optional means that a conforming CMI must receive all HACP messages types (and send an acknowledgement of
successful receipt) but may not store or use al data, or optional communication dataelements. A conforming CMI
may support many options.

An extension is a data element that is not described in this specification. Extensions may be supported by a CMI.
However, extension data elements may not perform the identical function as data elements defined in this
specification; and extension data elements may not contain the same semantic values as defined data elements. |If
extensions are used to duplicate mandatory and optional features, the CMI is non-conforming.

AU Conformance
Mandatory means that the AU shall issue the indicated HA CP messages, and properly store and use the mandatory
dataelements. Furthermore, the indicated HA CP messages will be properly formatted and sent to the CM1 system.

Optional means that the AU shall issue the mandatory HACP messages, may issue the optional HA CP messages,
and may use or support the indicated data elementsin either. Furthermore, all HACP messages will be properly
formatted and sent to the CMI system.

An extension is adata element that is not described in this specification. Extensions may be supported/used by an
AU. However, extension data elements may not perform the identical function as data elements defined in this
specification; and extension data elements may not contain the same semantic values as defined data elements. |If
extensions are used to duplicate mandatory and optional features, the AU is non-conforming. Extension data
elements must be passed within existing HA CP message types defined.

6.5.1 CMI Responsibilities

Launch and Communication
The CMI system shall do the following to launch an assignable unit (AU):
1. Append launch parametersto the URL location of the AU
2. Redirect the web-browser to the modified URL
3. Listenfor AU requests
4. Issueresponse messages for AU requests

The CMI must support al the data elements described for this binding as mandatory (described in section 6.6). The
CMI may support the optional data elements. The CMI may also support extensions not defined in this specification
as long as those extensions do not duplicate any mandatory or optional features. Additionally, the support of any
extensions must not cause the failure of any AU not using the extensions.

August-16-2004 175 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Sequencing
An assignable unit (AU) may only be launched by aCMI. An AU may not itself launch other assignable units. An
assignable unit must, at a minimum, be able to do the following:
1. Havethe ability to be launched from aweb browser (as described in sections 6.3)
2. Parse Launch parameters (as described in sections 6.3)
3. Issue the minimum required HA CP message requests in the required sequence (as described in sections 6.3
and 6.4).

Flow control — moving from one AU to another — is assumed to be the responsibility of the CMI and not the AU
itself. Thisisconceptually important because AU reuse cannot really happen if the AU has embedded information
that is context specific to the course. In this context, flow control means that the decision of what AU will next be
presented to the student is made by the CMI. (This recognizes that some AU’s may make decisions—that is, branch
— within themselves, but that kind of internal flow is hidden from the CM1.)

The determination of which AU(s) the student is routed to is determined solely by the CMI and is defined in large
part by the Course Structure description (Chapter 3). Chapter 3 defines information about the AU that is context
specific to the course (e.g., the default sequence of AU’s, and prerequisites or completion requirements that might
alter the delivery path.)

6.5.2 Assignable Unit (AU) Responsibilities

Launch and Communication
An assignable unit must, at a minimum, be able to do the following:
1. Havethe ability to be launched from aweb browser (as described in sections 6.3)
2. Parse Launch parameters (as described in sections 6.3)
3. Issue the minimum required HACP message requests in the required sequence (as described in
sections 6.3 and 6.4).
4. Support all the following communication data elements (listed in the tables bel ow)

GetParam (Response) — AU mandatory data elements
Group Name or Keyword Communication Data Model Name Section

PutParam (Request) — AU mandatory data elements

Group Name or Keyword Communication Data Model Name Section
[Core] Core 2.1
Lesson_Location Core.Lesson Location 2.1.4
Lesson_Status Core.Lesson Status 2.1.6
Score Core.Score 2.1.10
Time Core.Session_Time 2.1.12

The AU must support all the data elements described for this binding as mandatory (above). The AU may support
the optional data elements. The AU may also support extensions not defined in this specification as long as those
extensions do not duplicate any mandatory or optional features. Additionally, the support of any extensions must
not cause the failure of any CMI not using the extensions.

Sequencing
An AU may not itself launch other assignable units

August-16-2004 176 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

6.6 Communication Data Model Mapping

This section contains the mapping of the communication data model elements (defined in section 2.0) to the HACP
binding. The contents of the HACP request and response messages are defined in this section. The request
messages used by the AU for communication are as follows:
- GetParam

PutParam

PutComments

PutObjectives

PutPath

Putlnteractions

PutPerformance

Thefollowing is defined for each of the above message types:
A description of the message’ s purpose
A list of communication data model elements used
The format of the data contained in AICC_DATA namel/value pair (if any)
An example of request and response messages

6.6.1 GetParam (Messages)

Purpose
The GetParam request is used by the CMI system to pass datato the AU. (See section 6.4.1).

Data Model Elements

The following table describes the Group and Keywords used by the GetParam response message with corresponding
data model names, references, and Mandatory/Required designations. For specific usage of a data element refer to
the corresponding section in the Chapter 2.0 Communication Data Model. Note that n indicates an array index.

Data Model Elements (Response M essage)

Eg?lij%r’zimes e Communication Data Model Name Section gmligation
[Core] Core 2.1 Mandatory
Student_ID Core.Student Id 211 Mandatory
Student_Name Core.Student Name 212 Mandatory
Lesson_Location Core.Lesson Location 214 Mandatory
Credit Core.Credit 2.15 Mandatory
Lesson_Status Core.Lesson Status 2.1.6 Mandatory
Core.Entry 2.1.8 Mandatory
Score Core.Score 2.1.10 Mandatory
Core.Score.Raw 2.1.10 Mandatory

Core.Score.Max 2.1.10 Optional

Core.Score.Min 2.1.10 Optional
Time Core.Total_Time 2.1.12 Mandatory

Lesson_Mode Core.Lesson Mode 2.1.13 Optional
Core_Lesson] Suspend Data 2.1 Mandatory
Core Vendor] Launch Data 2.3 Mandatory

Comments] Comments From LMS 2.6 Optional

Evaluation] Evaluation 2.7 Optional

Course_ID Evaluation.Course ID 2.7.2 Optional

[Objectives_Status] Objectives 2.8 Optional

J ID.n Objectives.ID 28.1 Optional

J_Score.n Objectives.Score 2.8.2 Optional

Objectives.Score.Raw 2.8.2 Optional

Objectives.Score.Max 2.8.2 Optional

August-16-2004 177 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

CK;g?/\ljv%r’gzmes e Communication Data Model Name Section gmligation
Objectives.Score.Min 282 Optional
J_Status.n Objectives.Status 2.8.3 Optional
[Student_Data] Student Data 2.9 Optional
Attempt_Number Student Data.Attempt Number 291 Optional
Mastery_Score Student Data.Mastery Score 293 Optional
Max_Time_Allowed Student Data.Max Time Allowed 293 Optional
Time_Limit_Action Student Data.Time Limit Action 294 Optional
Student Data. 2.9.7 Optional
Score.n Student Data.Sessions Journal.Lesson Score | 2.9.7.1 Optional
.Raw 29.71 Optional
.Max 2971 Optional
.Min 29.71 Optional
Lesson_Status.n Student Data.Sessions Journal.Lesson 29.7.2 Optional
Status
[Student_Demographics] Student Demographics 2.13 Optional
City Student Demographics.City 2.13.1 Optional
Class Student Demographics.Class 2.13.2 Optional
Company Student Demographics.Company 2.13.3 Optional
Country Student Demographics.Country 2.13.4 Optional
Experience Student Demographics.Experience 2.135 Optional
Familiar_Name Student Demographics.Familiar Name 2.13.6 Optional
Instructor_Name Student Demographics.Instructor Name 2.13.7 Optional
Job_Title Student Demographics.Title 2.13.12 Optional
Native_Language Student Demographics.Native Language 2.13.8 Optional
State Student Demographics.State 2.13.9 Optional
Street_Address Student Demographics.Street Address 2.13.10 Optional
Telephone Student Demographics.Telephone 21311 Optional
Years_Experience Student Demographics.Years Experience 2.13.13 Optional
[Student_Preferenc es] Student Preference 2.1 Optional
Audio Student Preference.Audio 2.10.1 Optional
Language Student Preference.Language 2.10.2 Optional
Lesson_Type Student Preference.Lesson Type 2.10.3 Optional
Speed Student Preference.Speed 2.104 Optional
Text Student Preference.Text 2.10.5 Optional
Text_Color Student Preference.Text Color 2.10.6 Optional
Text_Location Student Preference.Text Location 2.10.7 Optional
Text_Size Student Preference.Text Size 2.10.8 Optional
Video Student Preference.Video 2.10.9 Optional
Window.1 Student Preference.Windows 2.10.10 Optional

AICC_Data Format (Request M essage)

Not Applicable for GetParam request messages. If the aicc_data name/value pair is present in GetParam request
messages, it isignored by the CMI.

AICC_Data Format (Response M essage)

The GetParam response message is formatted as datatype CMIFormatINI (See section 9.0 - Datatypes). All

mandatory data elements (listed in the table above) must be included.

Example

An example of atypical set of GetParam request/response messages are shown below:

GetParam Request M essage- example

comrand=Cet Par an&ver si on=4. 0&sessi on_i d=xyz123

GetParam Response M essage - example

error=0

error_t ext=Successf ul
aicc_data=; line 1

; line 2

; line 3

[Core]

August-16-2004

178

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

GetParam Response M essage - example

; Commrent
Student _| D = XYZ_1234
St udent _Nanme = Hyde, Jackson Q
Lesson_Location = 45
Credit = CRED
Lesson_Status = | NCOMPLETE
Score =
Ti me = 0000: 04: 30. 34
Lesson_Mbde = Nor nal

; Core_lesson is free-formgroup

[CORE_LESSON|
ny lesson state data — 1111111111111111111000000000000000000000000

11112111111121111111000000000000000000000000 — end ny | esson state data
; Core_vendor is also a free-formgroup
[Core_Vendor]

My Start up paraneters
45,67, 78, RR
End of My startup paraneters

[Eval uati on]
Course_ID = {}

[St udent _Dat a]
Mastery_Score =

6.6.2

Purpose

PutParam (Messages)

The PutParam request is used by the AU to pass (mandatory and optional) datato the CMI (See section 6.4.2).

Data Model Elements

The following table describes the Group and Keywords used by the PutParam request with corresponding data
model names, references, and Mandatory/Required designations. For specific usage of a data element refer to the

corresponding section in the Chapter 2.0 Communication Data Model . Note that n indicates an array index.

Data Model Elements (Request M essage)

August-16-2004

179

Group Names and
Keywords Communication Data Model Name Section CMI Obligation
[Core] Core 21 Mandatory
Lesson_Location Core.Lesson Location 21.4 Mandatory
Lesson_Status Core.Lesson Status 2.16 Mandatory
Core.Exit 2.1.7 Mandatory
Score Core.Score 2.1.10 Mandatory
Core.Score.Raw 2.1.10 Mandatory
Core.Score.Max 2.1.10 Mandatory
Core.Score.Min 2.1.10 Mandatory
Time Core.Session_Time 2.1.12 Mandatory
Core_Lesson] Suspend Data 2.1 Mandatory
Comments] Comments From Learner 2.4 Optional
Objectives_Status] Objectives 2.8 Optional
J ID.n Objectives.ID 281 Optional
J_Score.n Objectives.Score 2.8.2 Optional
Objectives.Score.Raw 282 Optional
Objectives.Score.Max 2.8.2 Optional
Objectives.Score.Min 2.8.2 Optional
J_Status.n Objectives.Status 2.8.3 Optional
[Student_Data] Student Data 2.9 Optional
Tries_During_Lesson Student Data.Tries During Lesson 295 Optional

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Group Names and
Keywords Communication Data Model Name Section CMI Obligation
Try_Score.n Student Data.Tries.Try_Score 292 Optional
Try_Time.n Student Data.Tries.Try_Time 2.9.2 Optional
Try_Status.n Student Data.Tries.Status 2.9.2 Optional
[Student_Preferences] Student Preference 21 Optional
Audio Student Preference.Audio 2.10.1 Optional
Language Student Preference.Language 2.10.2 Optional
Lesson_Type Student Preference.Lesson Type 2.10.3 Optional
Text Student Preference.Text 2.105 Optional
Text_Color Student Preference.Text Color 2.10.6 Optional
Text_Location Student Preference.Text Location 2.10.7 Optional
Text_Size Student Preference.Text Size 2.10.8 Optional
Video Student Preference.Video 2.10.9 Optional
Windown Student Preference.Windows 2.10.10 Optional

AICC_Data Format (Request M essage)

The PutParam request message is formatted as datatype CMIFormatINI (See section 9.0 - Datatypes). All
mandatory data elements (listed in the table above) must beincluded. All datais url -encoded and must be decoded
prior to interpretation.

AICC_Data Format (Response M essage)
Not Applicable for PutParam response messages. If the aicc_data name/value pair is present in PutParam response
messages, it isignored by the AU.

Example
An example of atypical PutParam (request/reponse) message sequence and AICC_DATA are show below:

AICC_DATA example (for a PutParam request)
prior to URL-encoding

' Finish File

[Core]
Lesson_Location =
Lesson_Status = C
Score =
Time = 00: 02: 30

87

[CORE_LESSON|

ny |lesson state data — 1111111111111111111000000000000000001110000

111111111111111111100000000000111000000000 — end nmy | esson state data
[COWENTS]

<1><L. Slide#2> This slide has the fuel listed in the wong units <e.1>

PutParam Request M essage- example

conmand=Put Par am&ver si on=4. 0&sessi on_i d=345678&Al CC_dat a=%3BYODYOAYBBY20Fi ni sh%20Fi | e%®
DYOAYBBY0 DY AY%GBCor e% DY DYOAYR0%20%20Lesson_Locat i on%20%8D%2087%0DYOAYXR0%20%20Lesson_S
t at usY2098DY20CYODYVOAYR0%R0%20Scor e%R093DY20%0DYOAYR0%20%20Ti me%20%3DY200098A02%8A30%0D
%0 A% DY) AY% BCORE_L ESSONYG DO DYOAYD DY Any %201 esson%20st at e%20dat a%20%20%2011111111111111
11111000000000000000001110000%0DYOAYODYOAYODYHAL1111111111111111111000000000001110000000
009%20%2D20end%20mny %201 esson%20st at e%20dat a%® DYO A% DY) A%%G BCOMVENTYS DYO DYO AY0 DVO AYBCLYBEY
3CL. Sl i de%2329BEY20Thi s%20s! i de¥20has%20t he%20f uel %201 i st ed%20i n%20t he%20w ong%20uni t s%
20%3Ce. 19BEYODYOA

August-16-2004 180 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

PutParam Response M essage - example

error=0
error_text=Successf ul

6.6.3 PutComments (Messages)

Purpose
The PutComments request sends data containing freeform feedback fro m the student (recorded by the AU) to the
CMI. Itisaduplicate of the [Comments] group that is passed to the CMI system in PutParam request(s).

NOTE: If aCMI system receives datafrom the AU in both [Comments] group (PutParam request) and the
PutComments request in the same AU session, then CMI must retain the data from the PutComments request and
discard the [Comments] group data from the PutParam request(s).

Data Model Elements
The following table identifies the Comment File's Fields, Data Model Names, and Data Model Section reference.

Data Model Elements (Request Message)

CSV File Field Identifier Communication Data Model Name Section
Course_ID Itemized Comments From Learner.Course_ID | 2.5.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Itemized Comments From Learner.Lesson_ID | 2.5.5
Date Itemized Comments From Learner.Date 2.5.3
Time Itemized Comments From Learner.Time 2.5.7
Location Itemized Comments From Learner.Location 2.5.6
Comment Itemized Comments From Learner.Content 251

AICC_Data Format (Request M essage)

The AICC_DATA valueistext formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 —
Datatypes for a detailed description of formatting rules). All CSV FileField Identifierslisted above must be
present in the header row, even if aspecific field is not supported/used by the CMI. All unsupported data elements
arerepresented as empty strings. Note that field identifiersidentify field position (i.e. “columns’) in arecord (i.e.
“row”) and canbein any order. Custom fields may be added to support vendor specific extensions but these must

have corresponding field identifiers in the header row and must not duplicate or conflict with existing fields'
functionality.

Thevalue of AICC_DATA isurl-encoded and must be decoded prior to interpretation.
AICC_Data Format (Response M essage)
Not Applicable for PutComments response messages. |f the aicc_data name/value pair is present in PutComments

response messages, it isignored by the AU.

Example
An example of atypical PutComments (request/reponse) message sequence and AICC_DATA are show below:

AICC _DATA example (for a PutCommentsrequest) prior to URL -encoding
"course_id","student _id","lesson_id","date","tine", "l ocation", "comrent"
" A380FT- 1", "j gh2003", " APUL", " 2006/ 01/ 15", 00: 14: 23 ,frane3, "I think that the word received is
not spelled correctly. The reason |I'mnot sure is because of the colors used for the
background and foreground text col ors. Purple on orange is really hard to read sonetines."
" A380FT- 1", "j gh2003", " APUL", " 2006/ 01/ 15", 00: 14: 36, franel6, "Wy did you change colors? | was
just getting used to purple on orange."

[PutComments Request Message- example

August-16-2004 181 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Al cc_dat a=%2cour se_i d%229%2C%22st udent _i d%22%2C%22I| esson_i d%22%2C%22dat e%22%2C%22t i ne%22%2C%22
| ocati on%22%2C%209%22conmrent ¥22%0DYOAYR2A380FTY2D1922%2C%22] gh2003%22%2 CYR2APULYR2292 CY222006%2F
019%2F15%2292 CO0Y8A14%8A23%R20%2Cf r ame3%2CY20%221 920t hi nk%20t hat %20t he%20wor d%20r ecei ved%20i s%20
not %20spel | ed¥%20correct|y. ¥%20The%20r eason%20! %27n?%20not ¥20sur e%20i s¥%20because¥200f %20t he%20col
or s%20used%20f or %20t he%20backgr ound%20and%20f or egr ound%20t ext %20col or s. %20%20%20Pur pl e%200n%20
or ange%20i s%20r eal | y920har d%20t 0%20r ead%20sonet i mes. Y22%ODYOAYR22A380FTYR2D19R22%2CY%22j qh2003%22%
20922APULY22%2 CY22200692F019%2F15%22%2 C0098A14%3A369%2C%R20f r ane16%2C%20%22Wy%20di d%20you%20chan
ge%20col or s¥%BFY20! %20was%20j ust 920get t i ng¥20used¥20t 0%20pur pl e%200n%200r ange. Y22&ver si on=4. 0&c
ommand=Put Comment s&sessi on_i d=McKi nL09

PutComments Response Message - example

error=0
error text=Successful

6.6.4 Putinteractions (Messages)

Purpose

All of theitemsin thisfile arerelated to arecognized and recorded input from the student (recorded by the AU).
Normally, the interactions recorded are student responses to a question. (See sections listed in table below for
description of the data elements recording student interactions)

Data Model Elements
The following table identifies the Interactions File' s Fields, Data Model Names, and Data Model Section reference.

Data Model Elements (Request M essage)

CSV File Field Idenifier Communication Data Model Name Section
Course_ID Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 211
Lesson_ID Lesson_ID 2.14
Date Interactions.Date 2.11.3
Time Interactions.Time 2.11.4
Interaction ID Interactions.|D 211.1
Obijective ID Interactions.Objectives 2.11.2
Type Interaction Interactions.Type 2115
Correct Response Interactions.Correct Responses 2.11.6
Student Response Interactions.Student Response 2.11.8
Result Interactions.Result 2.11.9
Weighting Interactions.Weighting 2.11.7
Latency Interactions.Latency 2.11.10

AICC_Data Format (Regquest M essage)

The AICC_DATA valueistext formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 —
Datatypes for adetailed description of formatting rules). All CSV FileField Identifierslisted above must be
present in the header row, even if aspecific field is not supported/used by the CMI. All unsupported data elements
are represented as empty strings. Notethat field identifiersidentify field position (i.e. “columns”) in arecord (i.e.
“row”) and can bein any order. Custom fields may be added to support vendor specific extensions but these must
have corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.

Thevalue of AICC_DATA isurl-encoded and must be decoded prior to interpretation.
AICC_Data Format (Response M essage)
Not Applicable for Putlnteractions response messages. |If the aicc_data name/value pair is present in Putlnteractions

response messages, it isignored by the AU.

Example
An example of atypical Putlnteractions (request/response) message sequence and AICC_DATA are show below:

August-16-2004 182 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

AICC _DATA example (for a Putl nteractionsrequest) prior to URL -encoding
"course_id","student _id", "l esson_id","date","tine","interaction_id","objective_id",
"type_interaction", "correct_response", "student _response", "result", "wei ghting", "l atency"
" A340ft- 2", "j gh085", " APU1", " 2004/ 01/ 15", " 15: 14: 23", 37,ft 1016, C, A, C, W, 00: 00: 3
"A340ft- 2", "wanD16", " APU1", " 2004/ 01/ 15", "15: 14: 23", 38, ft 2223,t,t,t,,, 00:00: 01
" A340ft- 2", "dag085", " APUL", "2004/ 01/ 15", " 15: 14: 23", 39, ft1 1134, C, B, B, C,, 00: 00: 02
"A340ft-2","trd0o18", "APUL", "2004/ 01/ 15", "15: 14: 23", 40, ft 1156, C,C, C, C,, 00: 00: 04

Putl nteractions Request M essage- example

Command=Put | nt er act i ons&Al CC_dat a=%22cour se_i d9%22%2C%22st udent _i d%22%2C%22| esson_i d¥%2292C%
22dat e%229%R2C%R22t | me%22%R2C%22i nt er acti on_i d9%22%2C%220bj ective_i d%22%2C¥%22t ype_i nt eracti on%2
292C%22correct _response%22%2 C¥22st udent _r esponse%R2%2C%22r esul t %2292C%22wei ght i ng922%2C%22
| at ency%22%0DYOAYR2A340f t 9RD29%R22%2C%22) qh085%22%2CY22APULYR22%2C%222004%2F01%2F15%2292C%221
508A1498A23922%2C37%2Cf t 1016%2CCYR2 CAYR CCYR2 CW/R2 CY2 CY200098A00Y8A3%O DYOAYR2A340f t 92 D2%R2292 C%
22wanD169%229%2 QR22APULY22%2CY%222004%2F01%2F15%229%2 CYR21598A14Y8A23%229R C38%2Cf t 2223%R2Ct %2Ct
%RCt R CYRCY2CY200093A009BA01YODYDAYR2A340f t 92D29R2292 CY22dag085%22%2 CYR2APULYR292 C%2220049R2
FO192F15%229%2 C%221598A14Y8A23%22%2 C39%2Cf t 113492 CC%2 CBY2 CBY2 CCY2 CY2CY200098A0098A02%0 DYDAY%
22A340f t 9RD29R2292C%22t r d018%R22%2CYR22APULYR2292 C%22200492F01%R2F15%22%2CY221598A1498A239R22%2C
4092Cf t 1156%2 CCY2 CC¥2 CCY2 CCY2 CY2 CY2000%8A00%BA04&Ver si on=4. 0&sessi on_i d=xavi er 123

Putl nteractions Response M essage - example

error=0
error_text=Successf ul

6.6.5 PutObjectives (Messages)

Purpose

Thisfile contains information on how the student has performed on objectives related to the AU. The performance
may be related to previous sessionsin the AU, or to the student user’ s performance in other AU’ s (in the same
course) related to the same objectives. These objectives are only those associated with the current launching AU,
not all the objectivesin the course or curriculum.

Data Model Elements
The following table identifies the Objective Status File's Fields, Data Model Names, and Data Model Section
reference.

Data Model Elements (Request M essage)

CSV File Field Idenifier Communication Data Model Name Section
Course_|D Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson_ID Lesson_ID 2.14
Date Objectives.Date 2.8.4
Time Objectives.Time 2.85
Obijective ID Objectives.ID 2.8.1
Score Objectives.Score 2.8.2
Status Objectives.Status 2.8.3
Mastery Time Obijectives.Mastery Time 2.8.6

AICC_Data Format (Regquest M essage)

The AICC_DATA valueistext formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 —
Datatypes for a detailed description of formatting rules). All CSV FileField Identifierslisted above must be
present in the header row, even if aspecific field is not supported/used by the CMI. All unsupported data elements
are represented as empty strings. Note that field identifiersidentify field position (i.e. “columns’) in arecord (i.e.
“row”) and can bein any order. Custom fields may be added to support vendor specific extensions but these must

August-16-2004 183 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability
have corresponding field identifiersin the header row and must not duplicate or conflict with existing fields'
functionality.
Thevalue of AICC_DATA isurl-encoded and must be decoded prior to interpretation.
AICC_Data Format (Response M essage)
Not Applicable for PutObjectives response messages. If the aicc_data name/value pair is present in PutObjectives

response messages, it isignored by the AU.

Example
An example of atypical PutObjectives (request/reponse) message sequence and AICC_DATA are show below:

AICC _DATA example (for a PutObjectivesrequest) prior to URL -encoding

COURSE_I D, STUDENT_I D, LESSON I D, DATE, TIMg OBJECTIVE |ID, SCORE, STATUS, MASTERY_TI ME
" MDBO- 2", " STUL009", "APUL", "2004/ 01/ 15", "10: 14: 23", " APU1684", 3,, "passed", "00: 02: 37"

PutObjectives Request M essage- example

SESSION_ID=LEZAT1993& COMMAND=PUTOBJECTIVES&AICC_DATA=COURSE_1D%2C% 20
STUDENT_ID% 2C% 20L ESSON_ID% 2C% 20DATE% 2C% 20TIME% 2C% 200BJECTIVE_|D% 2C
% 20SCORE% 2C% 20STATUS% 2C% 20M ASTERY _TIM E% 0D% 0A % 22M D80% 2D2% 22% 2C% 22
STU1009% 22% 2C% 22APU1 % 22% 2C% 222004% 2F01% 215% 22% 2C% 2210% 3A 14% 3A23% 22% 2
C% 22APU1684% 22% 2C 3% 2C% 2C% 20% 22PASSED% 22% 2C% 2200% 3A02% 3A37% 22& VERSIO
N=4.0

PutObjectives Response M essage - example

error=0
error_text=Successf ul

6.6.6 PutPath (Messages)

Purpose

To provide a mechanism to record the “ paths” a student use took during AU session(s). The pathsrecorded are
generally the order in which the student navigates through the AU. (See sectionslisted in table below for
descriptions of the data elements recording path information)

Data Model Elements
The following table identifies the PutPath request message Fields, Data Model Names, and Data Model Section
reference.

Data Model Elements (Request M essage)

CSV File Field Identifier Communication Data Model Name Section
Course_|D Evaluation.Course_ID 2.7.2
Student_ID Core.Student Id 2.1.1
Lesson ID Lesson ID 2.14
Date Paths.Date 2.12.2
Time Paths.Time 2.12.3
Element Location Paths.Location ID 2121
Status Paths.Status 2124
Why_Left Paths.Why Left 2125
Time_in_Element Paths.Time in Element 2.12.6

August-16-2004 184 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

AICC_Data Format (Request M essage)

The AICC_DATA vaueistext formatted as datatype CMIFormatCSV (See CMIFormatCSV in section 9.0 —
Datatypes for adetailed description of formatting rules). All CSV File Field Identifierslisted above must be
present in the header row, even if a specific field is not supported/used by the CMI. All unsupported data elements
arerepresented as empty strings. Note that field identifiersidentify field position (i.e. “columns”) in arecord (i.e.
“row”) and can be in any order. Custom fields may be added to support vendor specific extensions but these must
have corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.

Thevalue of AICC_DATA isurl-encoded and must be decoded prior to interpretation.

AICC_Data Format (Response M essage)

Not Applicable for PutPath response messages. If the aicc_data name/value pair is present in PutPath response
messages, it isignored by the AU.

Example
An example of atypical PutPath (request/reponse) message sequence and AICC_DATA are show below:

AICC_DATA example (for a PutPath request) prior to URL -encoding
"course_id","student _id","l esson_id","date","time", " el ement _| ocation", "status","why_left", "ti
me_in_el enent"

"course6", "stu2310", "first1", "2003/ 06/ 05", "14: 10: 31", "pagel”,"P","S", "00: 00: 24"

"course6", "stu2310","first1", 2003/ 06/ 05", "14: 10: 55", " page2","P","S", "00: 01: 06"
"course6", "stu2310", "first1", "2003/ 06/ 05", "14: 12: 01"," page3","I","L", "00: 02: 24"
"course6", "stu2310", "first1","2003/ 06/ 05", "14: 13: 25"," page4d","P","S","00: 00: 54"
"course6", "stu2310", "first1", "2003/ 06/ 05", "14: 14: 19", " page5","P","L", "00: 02: 40"
"course6", "stu2310", "first1", "2003/ 06/ 05", "14: 16: 59", " page6","P"',"S", "00: 03: 03"
"courseb", "stu2310", "first1", "2003/ 06/ 05", "14:20: 02"," page7","P',"E',"00: 02: 12"

PutPath Request Message

ai cc_dat a=%2page29%229RCYR2PYR29R2 CYR2SY22%2 CY220098A0198A06922%0DYOAYR2cour se692292C%22st u231
092292 C¥%R22f i r st 192292C%222003%2F06%2F05%22%2CY22149Y3A1298A019R229%R2CYR22%20page3%2%2CyR22] ¥2292C
922192292 CYR220098A0298A24922Y0DYOAYR2cour se6%22%R2CYR22st u23109R229%R2CY%22f i r st 19229%2C%222003%2F06
%R2F059R229%R2CYR2214Y8A13YBA25%R2292CY22%20paged 2292 CYR2PYR22%2 CY22 SY22%2 CY2200%3A00YBA5492 2 YO DYO A
%R2cour se69R29RCYR22st u23109%22%2C%22f i r st 192292C%222003%2F06%2F05%22%2 CY2214%Y3A14Y38A19%2 292 CYR2
2920page59R229%R2CR2PYR2292 CYR2L %2292 CY2200%3A02Y8A40%22%0DYOAYR22cour se69R29%2CY¥22st u23109%22%2C%R2
2first 19229%2C%222003%2F06%2F05%22%2 CY2 214Y8A1698A59%22%R2 CYR22%20pageb69R292 CyR2PYR22%2 CYR2SYR292
CY220098A03%BA03%R22YODYOAYR2cour se6%R292CY22st u2310922%R2C¥%22f i r st 192292 C¥222003%2F06%2F05%22%
2C9R221498A2098A0292292 CYR2920page7%R292 CYR22PYR2292 CYR22EYR292 CY22009Y8A0293A12922&

command=Put Pat h&ver si on=4. 0&sessi on_i d=345699&

PutPath Response M essage - example

error=0
error _text=Successful

6.6.7 PutPerformance (Messages)

Purpose
To record simulation-specific datafrom AU session(s) for later analysis.

Data Model Elements
Not applicable. PutPerformance datais devel oper-defined.

AICC_Data Format (Regquest M essage)
The formatting of the datais devel oper-defined. All datais url -encoded and must be decoded prior to interpretation.

August-16-2004 185 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

AICC_Data Format (Response M essage)
Not Applicable for PutPerformance response messages. If the aicc_data name/value pair is present in
PutPerformance response messages, it isignored by the AU.

Example

Not applicable.

6.6.8 ExitAU (Messages)

Purpose
To notify the CMI of AU session termination

Data Model Elements
Not Applicable.

AICC_Data Format (Request M essage)
Not Applicable for ExitAUrequest messages. |If the aicc_dataname/value pair is present in ExitAU request
messages, it isignored by the CMI.

AICC_Data Format (Response M essage)
Not Applicable for ExitAUresponse messages. If the aicc_data name/value pair is present in ExitAU response
messages, it isignored by the AU.

Example

ExitAU Request M essage- example
conmmand=Exi t AU&ver si on=4. 0&sessi on_i d=xyz123

ExitAU Response M essage - example

Error=0
Error_text=Successful

August-16-2004 186 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

7.0 Communicating via APl (The API Binding)

This chapter defines Application Programming Interface (API) binding to the communication data model in Chapter
2.0. It defines the following:

The environment in which the API operates

How the CMI launches Assignable Units (AUs)

How the API is used by AUsto communicate with the CMI system.

Conformance requirements for this binding.

Which elements from the data model described in Chapter 2.0 may be used by the API.

Although some of the data elementsin the communication data model may have different namesin the API binding,
there are no new data elements appearing in this chapter.

7.1 Conceptual Model

Inthe API binding, the AU will communicate using the widely supported JavaScript calling conventions. JavaScript
was selected as the method for implementing this API since nearly all browser platforms natively support it. This
binding defines several calls, the datain these calls, and the format of that data.

Thefigure below illustrates what is standardized. Note that the communication of the JavaScript object with the
CMI isoutside the scope of this specification. |mplementations of the communications of the JavaScript object with
the CMI may vary from product to product.”

Standardized |

AU
; Callsand

! API _ Standardized
: Implementation Data

The Assignable Unit (AU) initiates all communication (after it is launched by the CMI). This communication model
makes no provision for communication initiated by the CMI to the AU.

7.2 Operating Environment
The operating environment for this binding is a Web-Browser with JavaScript support.

August-16-2004 187 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

7.3 Launching an Assignable Unit

Environment

As depicted in the conceptual model, a CMI implements an API in the assignable unit’ s environment. The AU’s
implementer incorporatesin the AU the ability to discover and communicate with an APl implementation. A CM1 or
the front-end to an AU (assignable unit) repository (local or remote) provides an interface for the learner. The CMI
either delivers an assignable unit to the learner and startsit, or launchesa URI to initiate the AU. An assignable unit
hasintegrated procedures to locate an APl implementation.

Sequence of operations

The CMI initiates the launch of an assignable unit. Asthe AU starts up, it searches for the APl implementation.
After verifying that the APl implementationis accessiblein the AU’ s environment, the AU invokes the API
implementation through the instance that has been located.

The AU might not communicate further with the APl implementation for some time. All subsequent communication
ispart of this communication session until it isended. The AU may request data through the API implementation.
Through the APl implementation, the CMI returns the requested data or a message identifying an error condition.

While running, the AU may send or set data model data elements for storage across communication sessions. The
CMI may use data elements or other datain reports on alearner's status with that AU. The AU may elicit amore
detailed error message. The AU may continue communicating in this fashion, requesting and sending data until a
learner finishesa AU, alearner terminates the communication session before finishing, or the communication
session is abnormally terminated (e.g., loss of power, system crash). In the first two cases, the AU tellsthe API
implementation that it is closing the communication session. In the last case, the CMI will not receive asignal
through the API implementation that the communication session is closed. CMI behavior isthis caseis currently
undefined in this Guideline.

A summary of the normal sequence of operationsisasfollows:

1. TheCMI instantiates the APl implementation in the assignable unit DOM and initiates launch of an
assignable unit.

2. TheAU locatesthe API instance. (Note—Thisisarequired action of the AU.)

3. The AU invokes the LM SInitialize communication session method of the API implementation prior to
calling any other method. (Note—The use of this session method is arequired action of the AU.)

4. If the AU invokes one or more data-retrieval requests through the APl instance, the API returnsthe dataor,
in the case of an error, an empty string (""). The API sets an appropriate error status, either "0" for no error
or an error code. The error status can be retrieved by the AU on request. Callsto retrieve data (data-transfer
methods) are optional actions of the AU.

5. If the AU invokes one or more data-storage requests (LM SSetV alue) through the API instance, the API
either caches the datato send to the CMI later, or attemptsto send the datato the CMI immediately. In
either case the API instance returns an acknowledgement, either "true" or, in the case of an error, "false".
The API sets an appropriate error status, either "0" for no error or an error code. The error status can be
retrieved by the AU on request. Callsto store data (data-transfer methods) are optional actions of the AU.

6. If the AU invokes one or more of the predefined error handling methods through the API instance, the CMI
responds appropriately with data or messages through the API instance. Error handling methods are
optional actions of the AU. The API instance returns avalue or message if acall is made.

7. The AU invokes the termination method of the API instance. (Note—The use of this session method isa
required action of the AU.)

8. The API instance rejects any attempt by thisinstance of the AU to reinitialize the communication session.

August-16-2004 188 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

7.4 Method of Communication

Communication between AU and CMI is accomplished by the AU invoking function calls (or methods) from the
API object. The JavaScript API includes three kinds of methods:

Session methods— used to mark the beginning and the end of communication between athe AU object and
an APl implementation.

Data-transfer methods — used to transfer data model values between athe AU object and an API
implementation.

Error handling methods— used for auxiliary communications (e.g. error handling) between athe AU object
and the APl implementation.

The set of API function calls or methods consists of the following:

Session Methods
LMSlInitialize(*")
LMSFinish(*")

Data-transfer Methods
LM SGetVaue(parameter)
L M SSetV alue(parameter, value)
LM SCommit(parameter)

Error handling Methods
LM SGetL astError(*”")
L M SGetErrorString(parameter)
L M SGetDiagnostic(parameter)

7.4.1 Parameters

The parametersin the APl data-transfer methods have two or more parts. Each part is separated by aperiod “.”
(dot). Thefirst part isalways the name of the data model. The second part is always the name of an element in the
datamodel. Subseguent parts are either the name of an element in the data model, or a number, which refersto a
location within the preceding data element which, isan array.

datamodel .element

datamodel .element.element

datamodel .element.number.element
datamodel .el ement.number.element.number

Data model indicates which data nodel the value or return value is based on. In this specification, the data model is
aways“CMI".

The highest level of element is sometimes referred to asa Group in the CMI datamodel. In this document the word
"category" is used interchangeably withthe word "group." Each group element has a unique name in the CMI data
model.

Element refers to a specific namein the CMI data model. Each element that is a sub-element or member of another
element isreferred to as akeyword or afield. Some sub-elements may have the same name. To enable precise
identification, the element (sub-element) name must always be accompanied by the name of the group in which it
appears.

Number isasimple integer that refersto the location in an array, if the named valueisin an array. Thefirst element
inanarray isO.

August-16-2004 189 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

7.4.2 APl General Rules

Thefollowing list summarizes the usage rules for the API.
The function or method names are all case sensitive, and must always be expressed exactly as shown
above.
When afunction's parameter is a data model element name, it is case sensitive. All data model element
names are lower case.
Thefirst symbol in the data element name identifies the data model. For example, "cmi" indicates the
AICC/CMI data model (described in this docurrent). This expands the functionality of these API's by
allowing the same API to be used with other data models. (However, the use of other data modelsis outside
the scope of this document).
There are three reserved keywords. These are all lower case and proceeded by an underscore.

= _version
= _children
= _count

When LM SGetValueis executed, it returnsthe last set value if there was one.

7.4.3 Arrays — Handling Lists

There are several data elements that appear in alist or an array. An example of thiswould be interactions. There
may be more than one interaction covered in an AU, and a student may be allowed to perform an interaction more
than once.

To get or set valuesin alist, theindex number may be used. The only time an index number may be omitted is
when there is only one member in a potential list. Index numbering startsat 0. If avalueisto be appended to the
list, the Assignable Unit must know the last index number used.

All new array elements shall be added sequentially. The assignable unit shall not skip array numbers or leave empty
array elements when constructing alist of array values.

The _count keyword can be used to determine the current number of recordsin thelist. For instance, to determine
the number of interactions records currently recorded, the following APl would be used:
LM SGetVaue("cmi.interactions._count")

Elementsin alist are referred to with a dot-number notation (represented by .n). For instance the value of the status
element in thefirst interaction in a AU would be referred to as"cmi.interactions.O.result . The result element in
the fourth interaction would be referred to as " cmi.interactions.3.result”. If astudent experienced thefirst interaction
twice, there could be two results associated with the first interaction. These would be identified as
"cmi.interactions.O.result” and "cmi.interactions.O.result".

7.4.4 Session Methods

Session methods are used to initiate and terminate data communication between an APl implementation and asingle
instance of an AU object (assignable unit) during a single communication session.

The API implementation may have one of three communication states. Each of these communications states are
mutually exclusive and are as follows:

1. Notinitialized

2. Running

3. Terminated:

The initial API communication state (before the AU object islaunched) shall be "not initialized".

Session M ethods

LMSInitialize Description: This function is used to initiate communication between an assignable unit and
an APl implementation. It indicates to the API adapter that the assignable unit is going to

August-16-2004 190 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Session M ethods

communicate with the CMI. It allows the CMI to handle CMI specific initialization issues. Itis
called by the assignable unit before it can call any other API function.

Behavior notes
When the communication state is “not initialized” and initialization of communication succeeds,
the API instance
sets the communication state to "running";
sets the error state to "0" (No error); and
returns "true" to the calling content object.
1. When the communication state is "not initialized" and initialization of communication fails,
the APl instance
a) makes no change to the communication state;
b) sets the error state to "101" (General exception); and
c) returns "false" to the calling content object.
2. When the communication state is "running”, the API instance
a) makes no change to the communication state;
b) sets the error state to "101" (General exception); and
c) returns "false" to the calling content object.
3. When the communication state is "terminated", the API instance
a) makes no change to the communication state;
b) sets the error state to "301" (Not initialized); and
c) returns "false" to the calling content object.

Note: Additional and more specific error codes will be added in later versions of this standard.
Syntax:
return_value = LMSInitialize(parameter)

Parameter: “". An empty string must be passed for conformance to this specification. This
parameter is reserved for future extensions.

Return Value : String representing a Boolean “true” or “false”. A "true" result indicates that the
initialization was successful and a "false" result indicates that it was not.

Example:

var result = LMBInitialize("")
if (result == “false”)

(

)

el se

(
)

/1 Do sone error handling

/1 Continue with the execution of the assignable unit

LMSFinish

Description: The assignable unit must call this when it has determined that it no longer needs

to communicate with the CMI. If it successfully called LMSinitialize at any previous point. This

call signifies two things:

1. The assignable unit can be assured that any data set using LMSSetValue() calls has
been persisted by the CMI.

2. The assignable unit has finished communicating with the CMI.

Behavior notes
1. When the communication state is "running" and terminating communication
succeeds, the API instance
a) “Commits” any data in cache
b) sets the communication state to "terminated";
c) sets the error state to "0" (No error), and
d) returns "true" to the calling content object.
2. When the communication state is "running" and termination of communication or
committing the cache fails, the API instance
a) makes no change to the communication state;
b) sets the error state to "101" (General exception); and
c) returns "false" to the calling content object.
3. When the communication state is “not initialized", the API instance
a) makes no change to the communication state;

August-16-2004

191 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Session M ethods

b) sets the error state to "301" (Not Initialized); and
c) returns "false" to the calling content object.

4. When the communication state is "terminated", the API instance
a) makes no change to the communication state;
b) sets the error state to "101" (General exception); and
c) returns "false" to the calling content object.

Note: Additional and more specific error codes will be added in later versions of this standard.

Syntax:
return_value = LMSFinish(parameter)

Parameter: “". An empty string must be passed for conformance to this specification. This
parameter is reserved for future extensions.

Return Value : String representing a Boolean “true” or “false”. A "true" result indicates that the
initialization was successful and a "false" result indicates that it was not.

Example
var result = LMSFinish(“")

7.4.5 Data-Transfer Methods

Data-transfer methods are used to direct the storage and retrieval of datathat isto be available within the current
communication session.

Data-Transfer Methods

LMSGetValue Description: This function allows the AU (the assignable unit) to obtain information from the
CMIL. It is used to determine

- Values for various categories (groups) and elements in the CMI data model.

- The version of the data model supported.

- Whether a specific category or element is supported.

- The number of items currently in an array or list of elements.

Syntax:
return_value = LMSGetValue(parameter)

Parameter:

datamodel.group.element
Returns the value of the named element.

datamodel._version
The _version keyword is used to determine the version of the data model supported by
the CMI.

datamodel.element._count
The _count keyword is used to determine the number of elements currently in an array.
The count is the total number of elements in the array, not the index number of the last
position in the array.

datamodel.element._children
The _children keyword is used to determine all the elements in a group or category that
are supported by the CMI.

Return Value: All return values are strings which can be converted to the appropriate type.

LMSGetValue(datamodel.group.element)
The return value is a string representing the current value of the requested element or
group.

LMSGetValue(datamodel._version)
The return value is a string representing the version of the data model supported by the
CMI.

LMSGetValue(datamodel.group._children)
The return value is a comma-separated list of all of the element names in the specified
group or category that are supported by the CMI. If an element has no children, but is
supported, an empty string (*”) is returned. An empty string (*”) is also returned if an
element is not supported. A subsequent request for last error can determine if the

August-16-2004 192 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data-Transfer Methods

element is not supported. The error “401 Not implemented error” indicates the element
is not supported.

LMSGetValue(datamodel.group._count)
The return value is an integer that indicates the number of elements in an element list or
array.

Examples:
LMSGet Val ue("cni . core. student _nane")
A typical return value might be "Hyde, Jackson".

LMSGet Val ue("cmi . core. | esson_status")
A typical return value might be "incomplete”.

LMSGet Val ue(cni . _versi on)
The current AICC CMI Guideline is version 4.0 of document CMIO01. Therefore a
return value of AICC CMI001 4.0 would be appropriate.

LMSGet Val ue("cmi . student _preferences. _children")
This is a request for category support. One typical return value would be, "audio,
speed, text". If there is no return, preferences are probably not supported. An
additional API call to determine the last error could verify this.

LMSSetValue Description: This function allows the assignable unit to send information to the API. The API
may be designed to immediately forward the information to the CMI, or it may be designed to
forward information based on some other approach. For instance, the API could accumulate
the information and forward everything to the CMI when the LMSFinish call is executed by the
AU.

This function is used to set the current values for various categories (groups) and elements in
the CMI data model.
The data element name and its group are provided as a parameter. The current value of that
parameter is included in the call. Only one value is sent with each call.
Syntax:
return_value = LMSSetValue(parameter, value)
Parameter: This is the name of a fully qualified atomic element defined in the CMI Data
Model. The argument is case sensitive. The argument is a string surrounded by quotes.
The following represents some forms this parameter may take.
cmi.element
This is the name of a category or group defined in the CMI Data Model. An example is
"cmi.comments”.
cmi.element.element
This is the name of an element defined in the CMI Data Model. An example is
"cmi.core.student_name".
cmi.element.n.element
The value of the sub-element in the nth-1 member of the element array (zero-based
indexing is used).
Value: This is a string which must be convertible to the data type defined in this specification
for the element identified in the first parameter.
Return Value: String representing a Boolean.
A "true" result indicates that the function was successful and a "false" result indicates that it
was not.
Examples:
var result = LMSSet Val ue(“cm .core.score.raw’, “95")
Sets the cm .core.score.raw to a value of 95.
LMSCommit Description: If the JavaScript object (or APl implementation) is caching LMSSetValue values,

this call requires that any values not yet sent to the CMI be sent.

August-16-2004

193 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data-Transfer Methods

In some cases, the APl implementation may send the set values to the CMI as soon as they
are received, and not cache them locally. In such cases, this API is redundant and would
result in no additional action from the API implementation.

Syntax:
result = LMSCommit(parameter)

Parameter: “. An empty string must be passed for conformance to this specification. This
parameter is reserved for future extensions.

Return Value : String representing a Boolean.

A "true" result indicates that the function was successful and a "false" result indicates that it
was not. If an APl implementation automatically sends a values to the CMI as soon as
received, it shall return a “true” to this call.

Example:

var result = LMSCommit(“");
Requires that any cached values, previously set via assignable unit calls to
LMSSetValue(), that have not been persisted by the CMI be persisted.

7.4.6 Error Handling Methods
Error handling methods are used for error handling and diagnostics.

All callsto the JavaScript instance result in the error status being set by the instance. This status may be determined
using the Error Condition Methods. Therulesfor setting the error status are the following:

1. All successful callsresult in astatus of 0 being set.

2. All successful callsresult in the error status being set as described in the LM SGetL astError return value.

3. All error condition method calls do not change the error status.

Error Handling Methods

LMSGetLastError Description: The assignable unit must have a way of assessing whether or not any given
API call was successful, and if it was not successful, what went wrong. This routine returns
an error code from the previous API call. Each time an API function is called (with the
exception of this one, LMSGetErrorString, and LMSGetDiagnostic -- the support functions),
the error code is reset in the APl. The AU may call the error functions any number of times
to retrieve the error code, and the code will not change until the next API call.

Syntax:
return_value = LMSGetLastError(parameter)

Parameter: “”. Anempty string must be passed for conformance to this
specification. This parameter is reserved for future extensions.

Return Value : The return values are integer numbers that identify errors falling into the
following categories:

100 General errors
200 Syntax errors
300 CMI errors
400 Data model errors
The following codes are available for error messages:
0 No error

101. General exception

102. Server is busy.

201. Invalid argument error

202. Element cannot have children

203. Element not an array — cannot have count
204. Element cannot have a value

301. - Not initialized

401. Notimplemented error

402. Invalid Set Value, element is a CMI keyword
403. Element is read only

404. Element is write only

August-16-2004 194 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Error Handling Methods

405. Incorrect data type

Additional codes may be added in future versions

Examples:
var errorCode = LMSGetLastError(“")

LMSGetErrorString

Description: This function enables the AU to obtain a textual description of the error
represented by the error code number.

Syntax:
return_value = LMSGetErrorString(parameter)

Parameter: An integer number representing an error code.
Return Value : A string that represents the verbal description of an error.

Examples:
var errorString = LMSGetErrorString(“403")
errorString should contain “Element is read only”.

LMSGetDiagnostic

Description: This function enables vendor-specific error descriptions to be developed and
accessed by the AU. These would normally provide additional helpful detail regarding the
error.

Syntax:
return_value = LMSGetDiagnostic(parameter)

Parameter: The parameter may take one of two forms.
An integer number representing an error code. This requests additional information on
the listed error code.
“. An empty string. This requests additional information on the last error that occurred.

Return Value: The return value is a string that represents any vendor-desired additional
information relating to either the requested error or the last error.

Examples:

var norelnfo = LMSGet Di agnosti c(“403”)
morelnfo could contain more vendor specific information on the “Element is read
only” error.

August-16-2004

195 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

7.5 Conformance Requirements

Conformance to this binding may be looked at from two viewpoints, that of the Assignable Unit (AU) and that of the
CMI.

There are three levels of obligation for the API's and the data elements described in this specification:
- Mandatory
- Optional
- Extension

Obligationsfor the AU and the CMI are different.

CMI Conformance

Mandatory means that the CM| JavaScript object shall perform the action that the API callsfor. If theactionisto
return avalue to the AU, then the call must succeed in returning a value of the proper format and range.
Additionally, if the action isfor the AU to set avalue, then that value must assume the form requested by the AU,
and be returned if requested in the future.

Optional means that a conforming CMI may not respond at all to the parametersin aget value or set valuecall. A
conforming CM| may support many options.

An extension isan API or data element that is not described in this specification. Extensions may be supported by a
CMI. However, extension API's may not perform the identical function as adefined API; and extension data
elements may not contain the same semantic values as defined data elements. |f extensions are used to duplicate
mandatory and optional features, the CMI is non-conforming.

AU Conformance
Mandatory means that the AU shall execute the API. Only two API's are mandatory for the AU: LMSInitialize and
LMSFinish.

Optional means that the AU may execute the API with the specified parameter and value at least once. Furthermore,
the parameter and value shall be in the proper format and range.

An extension isan API or data element that is not described in this specification. The AU may support extensions.
However, extension API's may not perform the identical function as a defined API; and extension data elements may
not contain the same semantic values as defined data elements. If extensions are used to duplicate mandatory and
optional features, the AU is non-conforming.

7.5.1 CMI Responsibilities

The mechanism described here assumes a clean separation between the API function calls used in the AU and the
API implementation (or API object or JavaScript object or API instance). The API function calls are embedded in
the AU. The API implementation is provided by the CMI when the AU islaunched.

Launch

For browser and Web-based AU’ s, the CMI shall launch the AU from a browser window that contains the API
implementation, or must provide a parent frame that contains the APl implementation. Thiswindow shall contain a
reference to the assignabl e unit (whichisan URL).

Communication

The API implementation provided by the CMI must support all the API function calls described in this document as
required.

August-16-2004 196 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Thefunctionsto "get" and "set" data element values are generic in nature and do not specify particular data
elements. Data elements can be retrieved from the APl implementation using the LM SGetV alue function and
modified using a LM SSetV alue function. Regardless of implementation details, if adata element is supported by the
CMI, an LM SSetValue function call shall affect the value returned by a subsequent L M SGetV alue function call on
that same data element.

All return values shall be strings which are convertible to the designated data type.

The CMI shall support the ability of the AU to "get" and "set" the "communication” data elements defined as
mandatory in this specification. "Support" meansthat when the AU executesan" LM SGetValue" on an element, a
legal value of the proper format and type and range will be returned. When the AU executes alegal " LM SSetValue
" on asupported element, that value will be taken and the appropriate value returned when the next " LM SGetValue
"onitisexecuted.

The CMI may support the ability of the AU to "get" and "set" the optional data elements.
The CMI may also support extensions not defined in this specification aslong as those extensions do not duplicate

any mandatory or optional features. Additionally, the support of any extensions must not cause the failure of any the
AU not using the extensions.

CMI Conformance Requirements
- Supports the following transactions
. LMSiInitialize
LMSFinish
LMSGetValue
LMSSetValue
LMSCommit
LMSGetLastError
LMSGetErrorString

May support security transactions

LMSGetDiagnostic
- Supports all mandatory elements
- LMSGetValue shall succeed
- LMSSetValue shall succeed
- May support any or all optional elements
- LMSGetValue may succeed
- LMSSetValue may succeed
- May support extension elements if they do not duplicate defined
mandatory or optional elements
- LMSGetValue may succeed (or may fail)
- LMSSetValue may succeed (or may be ignored)
- Supported elements shall be proper type
- Supported elements shall be in proper range
- Keywords are all supported

Sequencing

Flow control — moving from one the AU object to another — is assumed to be the responsibility of the CMI and not
within the assignable unit (AU) itself. Thisis conceptually important because AU reuse cannot really happen if the
AU has embedded information that is context specific to the course. In this context, flow control means that the
decision of what AU (the AU) will next be presented to the student is made by the CMI. (Thisrecognizesthat some
AU’s may make decisions—that is, branch — within itself, but that kind of internal flow is hidden from the CMI.

The determination of which AU(Ss) the student is routed to is determined solely by the CMI and is defined in large
part by the Course Structure description (Chapter 3). Chapter 3 defines information about the AU that is context
specific to the course (e.g., the default sequence of AU’s, and prerequisites or completion requirements that might
alter the delivery path.)

August-16-2004 197 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

7.5.2 AU Responsibilities
The AU isresponsible for discovering (locating) the API object.

The AU shall be ableto call JavaScript functionsin a"foreign window". The A U does not have to be developed in
JavaScript but shall be able to call it. This capability enables the clean separation between the function callsused in
the AU and the implementation of those function calls provided by alearning management system.

For conforming Assignable Units, the AU shall call the LM SInitialize function before calling any other API
functions. If it callsthe Initialize function successfully, it shall also call the LM SFinish function beforeit
terminates, even if it does not call any other API functions.

The AU may support the required set of "communication” data elements defined in this specification.

Thetable below summarizes the requirements for conforming AU’s.

Conformance Requirements for The AU
Must support the following transactions:

- Initialize

- Zero or more transactions of:
- LMSGetValue(X)
- LMSSetValue(X,Y)
- Other

- Finish

- X'is an optional or extension data element
-Y must be in range
- Y must be the right type

Binding M echanism

AU shall communicate with a CMI system through a JavaScript API. This API will be part of a JavaScript object
attached to either a parent window or the “opener” window for the HTML page. The AU object shall look for an
instance of the APl implementation in the followinglocations, in order of precedence, and stop as soon as an
instanceis found:

a) Thechain of parents of the current window, if any exist, until the top window of the parent chainis
reached.

b) The opener window, if any.

¢) Thechain of parents of the opener window, if any exist, until the top window of the parent chain is reached.

An AU object may follow a simple algorithm to find an instance of an APl implementation.

Follow the algorithm until an instance is found.
When found, return the instance and exit the “find adapter” routine.
If not found, return anull and exit the routine.

A sample JavaScript implementation of this algorithm tested with several Web browsersis provided below.

[Sample JavaScript to Locate API object |

August-16-2004 198 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Sample JavaScript to Locate APl object

var findAPI Tries = 0;

/l returns the CM APl object (nmay be null if not found)
function findAPI (w n)

{
while ((wWin. APl == null) &&
(win.parent !'=null) &
(win.parent !'=wn))

findAPI Tri es++;
if (findAPITries > 7)

alert("Error finding API.");
return null;

}
Wi n = win.parent;

}

return wn. APl ;

}

/] obtain the CM API
function get APl ()

var theAPl = findAPI (wi ndow);
if ((theAPl == null) &&
(wi ndow. opener != null) &&
(typeof (w ndow. opener) != "undefined"))
theAPl = findAPlI (W ndow. opener);
}
if (theAPl == null)
alert("Unable to find an APl adapter");

return theAPl;

Summary Points: the AU assignable unit may only be launched by aCMI. An assignable unit may not itself launch
other assignable units. An assignable unit must, at aminimum, contain aninitialize() and afinish() API call to
conform with this guideline.

August-16-2004 199 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

7.6 Communication Data Model Mapping

The following table indicates the data elements that may be used by the AU in communicating with a CM|I using the
API. Definitions and examples for the data elements are in Chapter 2.

Inthe following table, "n” represents the array index (zero based). It isoptional when thereisonly one member in
thearray. The“DataModel Name” reflects the name of the data element that appearsin Chapter 2. The“API
Name” is the name that shall be used in the LM SSetV alue and LM SGetV alue methods to identify the element.
Some elements, namely the _count and _children, do not appear in the data model, and may only be used in the API.
The “Get/Set” column indicates which methods may be used with the data element. The “Section” column
references the section in this document where the data model element isdefined. The “Ob” column indicates the
whether an element is Mandatory for aCMI or not (“M” indicates mandatory, “O” indicates optional).

API Name Data Model Name Section Ob Get/Set

core 2.1 M | none
cmi.core._children M | Get
cmi.core.student_id . .student id 21.1 M | Get
cmi.core.student_name . student name 2.1.2 M | Get
cmi.core.lesson_location . lesson location 2.1.4 M | Get & Set
cmi.core.credit . credit 2.15 M | Get
cmi.core.lesson_status . lesson status 2.1.6 M | Get& Set
cmi.core.exit . exit 2.1.7 M | Set
cmi.core.entry . entry 2.1.8 M | Get

. score 2.1.10 M | none
cmi.core.score._children M | Get
cmi.core.score.raw .. raw 2.1.10 M | Get & Set
cmi.core.score.max ._Mmax 2.1.10 M | Get & Set
cmi.core.score.min . . min 2.1.10 M | Get & Set
cmi.core.session_time . session time M | Set
cmi.core.total_time . total time 2.1.12 M | Get
cmi.core.lesson_mode . lesson mode 2.1.13 O | Get
cmi. suspend_data suspend data 2.1 M | Get& Set
cmi.launch_data launch data 2.3 M | Get
cmi.comments Comments from learner 2.4 O | Get& Set

Itemized Comments from (@)

Learner

cmi.evaluation.comments._children O | Get
cmi.evaluation.comments._count O | Get
cmi.evaluation.comments.n.date . Date 2.5.3 O | Set
cmi.evaluation.comments.n .time . Time 2.5.7 O | Set
cmi.evaluation.comments.n.location . Location 2.5.6 O | Set
cmi.evaluation.comments.n.content . Content 25.1 O | Set
cmi.evaluation.comments.n.lesson_id Lesson_ID 2.14 O | Set
cmi.comments_from_Ims Comments from Ims 2.6 O | Get

objectives 2.8 (©)
cmi.objectives._children O | Get
cmi.objectives. count O [Get
cmi.objectives.n.id . id 2.8.1 O | Get & Set
cmi.objectives.n.score . score 2.8.2 (@)
cmi.objectives.score._children O | Get
cmi.objectives.score._count O | Get
cmi.objectives.n.score.raw . raw 2.8.2 O | Get& Set
cmi.objectives.n.score.max . max 2.8.2 O | Get & Set
cmi.objectives.n.score.min . . min 2.8.2 O | Get& Set
cmi.objectives.n.status . status 2.8.3 O | Get& Set
cmi.objectives.n.date . date 2.8.4 O | Set
cmi.objectives.n.time . time 2.8.5 O | Set
cmi.objectives.n.mastery_time . mastery time 2.8.6 O | Set

Student data 2.9 (©)
cmi.student_data._children O | Get
cmi.student_data.attempt_number . Attempt number 29.1 O | Get
cmi.student _data.tries . Tries 2.9.2 O | Get& Set

August-16-2004 200 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

APl Name Data Model Name Section Ob Get/Set
cmi.student_data.tries._children O | Get
cmi.student_data.tries._count O | Get
cmi.student_data.tries.n.status . . Status 2.9.2.2 O | Get & Set
cmi.student_data.tries.n.score . . Score 2921 O | Get & Set
cmi.student_data.tries.score._children O | Get
cmi.student_data.tries.n.score.raw . raw 29.2.1 O | Get & Set
cmi.student_data.tries.n.score.max . . max 29.2.1 O | Get& Set
cmi.student_data.tries.n.score.min . min 29.2.1 O | Get & Set
cmi.student_data.tries.n .time . . time 29.2.3 O | Set
cmi.student_data.mastery_score . Mastery score 2.9.2 O | Set
cmi.student_data.max_time_allowed . Max Time Allowed 2.9.3 O | Get
cmi.student_data.time_limit_action . Time Limit Action 294 O | Get
cmi.student_data.tries_during_lesson . Tries During Lesson 2.9.5 O | Set
cmi.student_data.attempt _records._children . Sessions Journal 2.9.7 O | Get
cmi.student_data.attempt_records.n.score . . Score 29.7.1 O | Get
cmi.student_data.attempt_records.n.score.children O | Get
cmi.student_data.attempt_records.n score.raw . raw 29.7.1 O | Get
cmi.student_data.attempt_records.n.score.max . max 29.7.1 O | Get
cmi.student_data.attempt_records.n.score.min .. . min 29.7.1 O | Get
cmi.student_data.attempt_records.n.lesson_status . . Lesson Status 29.7.2 O | Get

Student preference 2.1 [0)
cmi.student_preference. children O [Get
cmi.student_preference.audio . Audio 2.10.1 O | Get& Set
cmi.student_preference.language . Language 2.10.2 O | Get & Set
cmi.student_preference.lesson_type . Lesson type 2.10.3 O | Get & Set
cmi.student_preference.speed . Speed 2.10.4 O | Get& Set
cmi.student_preference.text . Text 2.10.5 O | Get & Set
cmi.student_preference.text_color . Text color 2.10.6 O | Get& Set
cmi.student_preference.text_location . Text location 2.10.7 O | Get& Set
cmi.student_preference.text_size . Text size 2.10.8 O | Get & Set
cmi.student_preference.video . Video 2.10.9 O | Get& Set
cmi.student_preference.windows._count O | Get
cmi.student_preference.windows.n . Windows 2.10.10 O | Get & Set

Interactions 211 [¢]
cmi.interactions._children O | Get
cmi.interactions._count O | Get
cmi.interactions.n.id . ID 2111 O | Set

. Objectives 2.11.2 O
cmi.interactions.objectives._count O | Get
cmi.interactions.n.objectives.n.id .. ID 2.8.1 O | Set
cmi.interactions.n.date . Date 2.11.3 O | Set
cmi.interactions.n .time . Time 2.11.4 O | Set
cmi.interactions.n.type . Type 2.11.5 O | Set

. Correct Responses 2.11.6 (©)
cmi.interactions.n.correct_responses._count O | Get
cmi.interactions.n.correct_responses.n.pattern 2.11.6 O | Set
cmi.interactions.n.weighting . Weighting 2.11.7 O | Set
cmi.interactions.n.student_response . Student Response 2.11.8 O | Set
cmi.interactions.n.result . Result 2.11.9 O | Set
cmi.interactions.n .latency . Latency 2.11.10 O | Set

paths 2.12 (@)
cmi.paths._children O | Get
cmi.paths._count O | Get
cmi.paths.n.location_id . Location ID 2.12.1 O | Set
cmi.paths.n.date . Date 2.12.2 O | Set
cmi.paths.n.time . Time 2.12.3 O | Set
cmi.paths.n.status . Status 2.12.4 O | Set
cmi.paths.n.why_left . Why Left 2.12.5 O | Set
cmi.paths.n.time_in_element . Time in Element 2.12.6 O | Set

Student demographics 2.13 [0)
cmi.student_demographics._children O | Get
cmi.student_demographics.city . City 2.13.1 O | Get
cmi.student_demographicsclass . Class 2.13.2 O | Get
cmi.student_demographics.company . Company 2.13.3 O | Get
cmi.student_demographics.country . Country 2.134 O [Get

August-16-2004 201 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

APl Name Data Model Name Section Ob Get/Set
cmi.student_demographics.experience . Experience 2.13.5 O | Get
cmi.student_demographics.familiar_name . Familiar Name 2.13.6 O | Get
cmi.student_demographics.instructor_name . Instructor Name 2.13.7 O | Get
cmi.student_demographics.title . Title 2.13.12 O | Get
cmi.student_demographics.native_language . Native Language 2.13.8 O | Get
cmi.student_demographics.state . State 2.13.9 O | Get
cmi.student_demographics.street_address . Street Address 2.13.10 O [Get
cmi.student_demographics.telephone . Telephone 2.13.11 O | Get
cmi.student_demographics.years_experience . Years Experience 2.13.13 O | Get

August-16-2004

202

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

8.0 Course Structure Definition (File Binding)

This chapter defines the File binding to the course structure data model (in chapter 3.0). Thisisthe only binding to
course structure data model.

The following items are covered in this section:
- How the CMI usesthefilesin this binding for interchange (import/export)
Conformance requirements for this binding
Which elements from the data model described in chapter 3.0 may be used by the File binding (Including
which files specific elements are located in and the format of thosefiles).

Although many of the data elements in the course structure data model have different namesin the interchange files,
there are no new data elements appearing in this chapter.

8.1 Conceptual Model

In the File binding, the CMI imports and exports course structures using text files (see figure below). To export a
course structure, the CM1 system writes a series of related text files. The text files represent ageneral course
description (asinglefile) and series of relational data“tables’ (one per file) that define all data needed to recreate a
course structure in an importing (target) CMI system. A CMI importing a course structure reads the text files and
recreates the course structure (or a subset of the original course structure) for itsinternal use.

—
— A f— 4

Course.CRS CourseCST

CMI system CMI system

Importing ‘

Exporting ‘

Course.DES Course ORT
v v

Course.CMP

Text files representing a
course structure

August-16-2004 203 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

8.2 Course Interchange

A set of 4to 7 text filesis used to describe a course’ s content and structure (a Course Interchange File set). A CMI
system must be able to create and interpret course interchange file sets for import and export operations (i.e. course
interchange). The table below depictsthe files used in a course interchange file set.

Files used in a Course Interchange File set

Data Elements & ;
File Type Description Eilei‘s‘s?c}n T?E)ﬁ Obligation
(See section below)

Course Description (CRS) File 8.4.1 {filename}.CRS No Mandatory
Assignable Unit (AU) File 8.4.2 filename}.AU Yes Mandatory
Descriptor (DES) File 8.4.3 filename}.DES Yes Mandatory
Course Structure (CST) File 8.4.4 filename}.CST Yes Mandatory
Objectives Relationships (ORE) File 8.4.5 filename}.ORE Yes Optional
Prerequisites (PRE) File 8.4.6 {filename}.PRE Yes Optional
Completion Requirements(CMP) File 8.4.7 {filename}.CMP Yes Optional

There is one course interchange file set per course. Filesin course interchange file set must be named with the
corresponding file extensions (shown in the table above). In order to be considered avalid course interchange file
set, all of the following rules must be met:

Rule#1 - All filesin the set must have the same base filename (depicted in the table above)

Rule#2 - All filesin the set must be located in the same directory.

Rule#3 - All of the mandatory file types must be included with all required course data elements (see
Chapter 3.0) and in the proper format (see section 8.4)

Rule#4 - The structure represented must follow the correct usage requirements for course data elements
(see chapter 3.0).

There are three kinds of course elements that compose a course structure:
Assignable Units
Blocks
Objectives

Course structures are logically organized around these three kinds of elements and the interpretation/creation of
course definition files sets depends on this organization. Certain filesin a set are tabular representations of data (i.e.
“tables) — see table above. Thefilesthat represent datatables have a CMI system generated identifiers (see Course

Elements. System ID) that identify records that are specific to individual course elements. The identifiers serve as an
index to find data specific to a course element.

8.2.1 Course Structure Export

To export acourse structure, the CMI1 system must create (export) avalid course interchange file set that accurately
reflects the data stored internally (in the CMI system database) for the given course.

The CMI must do the following in order to create a Course Definition File Set:

Create all of the required files (as described in section 8.2).

For each Assignable unit in the course, the CMI must:
o0 Generate acorresponding record in the Assignable Unit File (see section 8.4.2)
0 Generate acorresponding record in the Descriptor File (see section 8.4.3)

For each Block in the course, the CM| must:
0 Generate acorresponding record in the Course Structure File (see section 8.4.4)
0 Generate acorresponding record in the Descriptor File (see section 8.4.3)

The CMI may do the following in order to create optional featuresin a Course Definition File Set:
August-16-2004 204 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Create optional files (described in section 8.2) as needed.
Add optional data elements to the Course Description File (see section 8.4.1)
For each course element, the CMI may:
0 Generate acorresponding record in the Prerequisites File (see section 8.4.6)
0 Generate acorresponding record in the Completion Requirements File (see section 8.4.7)
For each Objectivein the course, the CMI may generate a corresponding record in the Objectives
Relationships File.
For each Objective in the course, the CMI must generate a corresponding record in the Descriptor File (see
section 8.4.3)

8.2.2 Course Structure Import

To import a course structure, the CMI system must read avalid course interchange file set and build an internal
representation (in the CMI system database) accurately reflectsthe logical structure and datafor the course
definition.

Since exported course structure file sets contain explicit references to Assignable Unit locations, it may be necessary
to edit the following course data elements prior to import:

Course Elements.File Name

Course.Elements.Command Line

This editing may be done manually prior to the import process or in an automated fashion. Some possible scenarios
for automated (AU location) updating are as follows:

Aninstallation process provided by the course devel oper

Special import functionality in to the CMI system.

8.3 Conformance Requirements

There are three levels of obligation described in this binding specification:
Mandatory
Optional
Extension

Mandatory means that the CMI must be able to import and export (create) a set of required course structure files (as
described in sections 8.2) and support all mandatory course data elementsin those files.

Optional means that a conforming CMI may be able to import or export (create) optional course structure files and
support indicated course data elements. A conforming CMI may support many options. Course structure options
are grouped in levels of complexity (see section 3.5). A CMI may support individual optional elements without
supporting all elements defined in a course “level”

An extension isacourse data element that is not described in this specification. Extensions may be supported by a
CMI for course structure dataimport or export. However, extension course data elements may not perform an
identical function as data elements defined in this specification; and extension data el ements may not contain the
same semantic val ues as defined data elements. If extensions are used to duplicate mandatory and optional features,
the CMI is non-conforming.

August-16-2004 205 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

8.4 Course Structure Data Model Mapping

This section contains the mapping of the course structure data model elements (defined in section 3.0) to thefile
binding. Thefilesareasfollows:

Course Description (.CRS) File

Descriptor (.DES) File

Assignable Unit ((AU) File

Course Structure (.CST) File

Obj ectives Relationships (.ORT) File

Prerequisites (.PRE) File

Completion Requirements (.CMP) File

Thefollowing is defined for each of the abovefiles:
A description of thefile’'s purpose
A list of course structure data model elements used
Thefile'sdataformat
An example

8.4.1 Course Description (.CRS) File

Purpose
Thisfile contains information about the course asawhole. It offersinformation that relates to more than just a
single element in the course.

Course Structure Data Model Elements
The following tableidentifies the Fields, Data Model Names, Data Model Section reference, obligation, course level
for the Course Description file.

Group Names & Keywords Data Model Element Section Obligation Course
Level
[Course] Course 3.1 Mandatory 1
Course_Creator Course.Creator 3.1.1 Mandatory 1
Course_ID Course.ID 3.1.2 Mandatory 1
Course_System Course.System 3.1.3 Mandatory 1
Course_Title Course.Title 3.14 Mandatory 1
Level Course.Level 3.15 Mandatory 1
Max_Fields CST Course.Max Fields CST 3.1.6 Mandatory 1
Max_Felds_ ORT Course.Max Fields ORT 3.1.7 Optional 3b
Total_Aus Course.Total AUs 3.1.8 Mandatory 1
Total Blocks Course.Total Blocks 3.1.9 Mandatory 1
Total_Objectives Course.Total Objectives 3.1.10 Optional 3b
Total Complex_Obj Course.Total Complex Objectives | 3.1.11 Optional 3b
Version Course.Version 3.1.12 Mandatory 1
[Course_Behavior] Course.Behavior 3.2 Mandatory 1
Max_Normal Course.Behavior.Max Normal 3.2.1 Mandatory 1
[Course_Description] Course.Description 3.3 Mandatory 1
File Format

The Course Description file is text formatted as datatype CMIFormatINI. (see section 9.0 - Datatypes)

August-16-2004 206 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Example
An example of atypical Course Description fileis show below

Course Description (.CRS) File Example

[Cour se]

course_creator=ABC Ai rpl anes, “Jason Doit, GO, Taylor Belt, Ciss Ooss
course_id = Al6. 82. 2003

course_system = C++ for nost units, Del phi for management system
course_title = Principles of A rplane Design and Flight

| evel =3b

max_fiel ds_cst=7

max_fields_ort =5

total _aus = 36

total _blocks = 8

total _objectives = 46

total _conpl ex_obj ectives =5

version = 4.0

[Cour se_Behavi or]

max_normal = 99

[Course_Descri ption]

This course is designed to instill in the student a sense of wonder and anazerent. It
covers the principles of flight, putting the principles in historical context. It

includes interactivity and nul ti medi a.

When the student conpletes this course he will be able to conplete a 100 questi on,
multiple choice test, with over 80%correct answers. The test is included as | esson 36:
“Final Quiz.”

8.4.2 Descriptor (.DES) File

Purpose
Thisfile contains a complete list of every course element in the course. It isused asthe basic cross-reference file
showing the correspondence of system generated IDswith user defined IDs for every element.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Descriptor file.

Field Name Data Model Element Section Obligation | Course
Level
System_ID Course Elements.System ID 3.4.1 Mandatory 1
Developer_ID | Course Elements.Developer ID 3.4.2 Mandatory 1
Title Course Elements.Title 3.4.3 Mandatory 1
Description Course Elements.Description 3.4.4 Optional 2

File Format

The Descriptor file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). All field name
identifiers must be included in the header row. Note that the order of field name identifiers specify field position
(i.e. “columns’) in arecord (i.e. a“row”) and can be in any order. Unsupported data elements are represented as
empty strings. Custom fields can be added to support vendor specific extensions but these must have
corresponding field identifiers in the header row and must not duplicate or conflict with existing fields'
functionality.

Example
An example of atypical Descriptor fileis show below

| Descriptor (.DES) File Example

August-16-2004 207 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Descriptor (.DES) File Example
"system.id", "devel oper_id","title","description"
“Root”, “AP-PP-2003", Mddern Power Plants — Description and Cperation, “This course covers
Pratt & Wiitney jet engines. It provides information on both how they are designed, and how
they may be operated.”

"Al","PP1-2","Power Plant Introduction”,"An overview of the operation of the primary systens in
the Pratt & Whitney PW2037 engine."

B1, “PP20-1", “Power Plant Description”,,
"A2", "PP2-1","Power Plant Fuel Systeni,"Fuel novement fromthe tank to the conbustors."”
"A3","PP3-1","Power Plant G| Systent,"Gl circulation systemin the PW037 engine."

“A4", PP4-1, “Designing for the Future”, “A historical perspective on how these engines canme to

“B2", “PP20-2", “Power Plant Qperation”,,

“A5","PP5-2", “Starting an Engine”, “A generic tutorial on what nust be done in any airplane to
start one of these jet engines.”

A5, PP6-2, “Fromthe Gound to Flight”, “How to operate, and what performance to expect, when
engines are in the ground and in flight.”

8.4.3 Assignable Unit (LAU) File

Purpose
Information relating to the assignable units (AU) in the course.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course

Level for the Assignable Unit file.

Field Name Data Model Element Section Obligation CLoeLi/r:Ie
System ID Course Elements.System ID 3.4.1 Mandatory 1
Type Course Elements.Type 3.4.5 Optional 2
Command_Line Course Elements.Command Line 3.4.6 Mandatory 1
File_Name Course Elements.File Name 3.4.7 Mandatory 1
Max_Score Course Elements.Max Score 3.4.8 Optional 2
Mastery Score Course Elements.Mastery Score 3.4.9 Optional 2
Max_Time_Allowed | Course Elements.Max Time Allowed 3.4.10 Optional 2
Time_Limit_Action Course Elements.Time Limit Action 3.4.11 Optional 2
System_Vendor Course Elements.Development System 3.4.12 Optional 2
Core_Vendor Course Elements.Launch Data 3.4.13 Mandatory 1
Web_Launch Course Elements. Web Launch Parameters 3.4.14 Mandatory 1
AU_Password Course Elements.AU Password 3.4.15 Mandatory 1

File Format

The Assignable Unit file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). All field
name identifiers must be included in the header row. Note that the order of field name identifiers specify field
position (i.e. “columns”) in arecord (i.e. a“row”) and can bein any order. Unsupported data elements are
represented as empty strings. Custom fields can be added to support vendor specific extensions but these must have
corresponding field identifiers in the header row and must not duplicate or conflict with existing fields’
functionality.

Example
An example of an Assignable Unit fileis show below

| Assignable Unit (LAU) File Example

August-16-2004 208 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Assignable Unit ((AU) File Example
"systemid", "type", "command_line", "Max_Time_Allowed", "tine_limt_action”, "file_nane",
"max_score", "nastery_score", "systemvendor", "core_vendor”, “web_launch”, “AJ password”
"Al1","B16- | esson", "APUL -nuv", "00:16:00", “Exit”, "APUL. EXE', 80, 80, "APW, , ,
"invasi on1944”
"AL2","test", "APU2 -nuv", "00:26:00", "E, Message”, "APW2.EXE', 100, 90, "APW, "test = on",
"vendor param = plato”, “strangel ove”
"A13", "lesson", "ELEC -nuv", "00:28:00", "E N', "ELECL. EXE', 50, 50, "APW,

8.4.4 Course Structure (.CST) File

Purpose

Thisfile contains the basic data describing the order and grouping of AU’sin acourse. It includes the definition of
course elements contained in blocks. The order in which these appear in the file implies (but does not force) an
order for presentation to the student.

Course Structure Data Model Elements

Thefollowing table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Course Structure file. Note that there may be multiple instances of Course Elements.Members.System
ID associated with asingle instance of Course Elements.System ID.

Field Name Data Model Element Section | Obligation Course
Level

Block Course Elements.System ID 3.4.1 Mandatory 1

Member Course Elements.Members.System ID 3.4.16.1 [Mandatory 1

File Format

The Assignable Unit file istext formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). Note that
each record may have avariable number of columns for Course Elements.Members.System ID (Including
corresponding field name header). The maximum number of columns is determined by the header row.

Example
Course Structure File Example
"block","member","member","member","member"
"root", "B1", "B2", "B3",
"B1", "A1", "A2", "A3",
"B2", "A4", "A5", "A6", "A7T"
"B3", "A8", "A9"
8.4.5 Objectives Relationships (.ORT) File

Purpose
The Objectives Relationship file defines the relationships of simple and complex objectives to assignable units and
blocks.

Course Structure Data Model Elements

The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course
Level for the Objectives Relationship file. Note that there may be multiple instances of Course
Elements.Members.System | D associated with asingle instance of Course Elements.System 1D

Field Name Data Model Element Section Obligation Course
Level
Course_Element | Course Elements.System ID 3.4.1 Optional 3b
Member Course Elements.Members.System ID 3.4.15 Optional 3b

August-16-2004

209

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

File Format

The Objectives Relationship file is text formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). Note
that each record may have avariable number of columns for Course Elements.Members.System ID (Including
corresponding field name header). The maximum number of columnsis determined by the header row.

Example
An example of an Objectives Relationship fileis show below

Objectives Relationship File example
"course_element","member","member","member","member","member"
"B13","J23","J24","J25",,

"A48","J27","J28",,,
"J16","J93","J94","J95",,
"B14","J16","J26","J29","330","J31"
“J31","A15",,,,

8.4.6 Prerequisites (.PRE) File

Purpose

Sometimes it may be desirable to prevent a student from entering alesson or assignable unit until he has met
certain prerequisites. Thisfile allowsthat sort of constraint to be placed on each block or assignable unit (AU)
inacourse.

Course Structure Data Model Elements
The following table identifies the Fields, Data Model Names, Data Model Section reference, Obligation, and Course

Level for the Prerequisite file.

Field Name Data Model Element Section | Obligation Level
Structure_Element [Course Elements.System ID 3.4.1 Optional 2
Prerequisite Course Elements.Prerequisite 3.4.16 Optional 2,3b**

(** = See section 3.5.1 notes for additional information about this data element levels)

File Format

The Prerequisite file istext formatted as datatype CMIFormatCSV. (see section 9.0 - Datatypes). All field name
identifiers must be included in the header row. Note that the order of field name identifiers specify field position
(i.e. “columns”) in arecord (i.e. a“row”) and can be in any order. Unsupported data elements are represented as

empty strings.

Example

Prerequisite File Example
structure_el ement, prerequisite
a2, al
a3, a2
bl, a3
a6, bl
b2, a6

8.4.7 Completion Requirements (.CMP) File

Purpose

The Completion Requirementsfileis designed to allow the explicit specification of when an assignable unit, block
or objective should be assigned a specific status when that status does not conform to the defaults. It isessentially
an exception file. All field name identifiers must be included in the header row. Unsupported data elements are
represented as empty strings.

Course Structure Data Model Elements

August-16-2004 210 CMI001 Version 4.0

The following table identifies the Fields, DataModel Names, Data Model Section reference, Obligation, and Course

AICC - CMI Guidelines for Interoperability

Level for the Completion Regquirementsfile.

Field Name Data Model Element Section Obligation Level
Structure_Element | Course Elements.System ID 3.4.1 Optional 2
Requirement Course Elements.Completions.Requirement 3.4.18.1 Optional 2,3a, 3b**
Result Course Elements.Completions.Status if True 3.4.18.2 Optional 2
Next Course Elements.Completions.Next AU if True 3.4.18.3 Optional 2
Return Course Elements.Completions.Goto after Next 3.4.18.4 Optional 2

(** = See section 3.5.1 notes for additional information about this data element levels)
File Format

The Prerequisite file istext formatted as datatype CMIFormatCSV. (see section 9.0- Datatypes). All field name
indentifiers must be included in the header row. Note that the order of field name identifiers specify field position
(i.e. “columns’) in arecord (i.e. a“row”) and can be in any order. Unsupported data elements are represented as
empty strings. Custom fields can be added to support vendor specific extensions but these must have corresponding

field identifiersin the header row and must not duplicate or conflict with existing fields’ functionality.

Example

An example of an Completion Requirementsfile is show below

August-16-2004

Completion Requirementsfile example

Structure_El ement, Requirenent, Result,

A4, AA=F, Passed, A5, A4

Next ,

Return

211

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

9.0 Data Types

All datatypes used in this specification are defined in the following section. All datatypes are character strings
encoded per 1SO-8859. Any |SO-8859 defined character set can be used. (1SO-8859 characters setsinclude US-

ASCII as asubset)

Each datatype has the following itemsto describe it:

Datatype
Name of the data type defined

Description
A verbal description of the size and data formatting rules for a datatype.

BNF Notation

Thisisastructured notation representing the format of the datain BNF (Backus-Naur Form). How to
interpret BNF is described in section 10.0 BNF Notation. Data Types defined in this section may be also
used is BNF statements as constructs (all other BNF constructs are described in section 10.0). The BNF

notation takes precedence should it bein conflict with the verbal description of a datatype.

Size

Size limit for this data type

Examples.

Examplesincluded in this section are surrounded by double-quotes (“)sto indicate literal values. Unless

otherwise specified. the double-quotes are not part of the values depicted. Comments describing the
examples are indicated italics and are not part of the data values depicted

Data type

Data Types

CMIBlank

Description

An empty string.

BNF Notation

Size

0 Characters

Examples

Data type CMiIBoolean

Description A vocabulary of two words. (“true” or “false”).

BNF Notation “true” | “false”

Size 4 Characters

Examples “true”

Data type CMIComment4096INI

Description A string composed of zero or more consecutive “comment statements”.

Comment statements are composed of the following items:

Start tag - The comment statement starts with integer number
enclosed in angle brackets (i.e. “<1>"). This number is serialized
for the next comment statement (i.e. the next comment would
begin with a “<2>")

August-16-2004

212 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

Location Tag (optional) — The location tag indicates the location in the AU
where the comment was made by the user. This optional tag is located
immediately after the start tag. It is comprised of a the letter “L” followed
by a period and an AU defined location enclosed in angle brackets
(e.g.”<L.some lesson location>")

Body - The body of the comment is included after the start tag. A
comment may include any printable character except “<>[]".
Embedded carriages, spaces, and tabs are also allowed.

End Tag - The comment statement ends with a “.e” added to an integer
number with enclosed in angle brackets (i.e. “<e.1>") The integer number
in the end tag matched the start tag.

BNF Notation *(
“<” *1(DIGIT) “>"
[“<" (‘L[“1") “" 1*(INI_CMT_OK) “>"
*(INI_CMT_OK | WHITESPACE)
(“<e.” *1(DIGIT) “>"

)
Size 4096 Characters
Examples “<1>The background color is too bluel<l.e><2>The CDU panel has the

incorrect ‘way points’ displayed for this route. <2.e><3><l.slide #36>The CDU
panel has the incorrect ‘way points’ displayed for this route. <3.e><4>The CDU
panel has the incorrect ‘way points’ displayed for this route. <4.e>"

“<1>The background color is too blue!<l.e>
<2>The CDU panel has the incorrect ‘way points’ displayed for this route. <2.e>
<3>The CDU panel has the incorrect ‘way points’ displayed for this route. <3.e>

<4>The CDU panel has the incorrect ‘way points’ displayed for this route.

<4.e>"
Data type CMIDate
Description A period in time of one day, defined by year, month, and day in the following

numerical format YYYY/MM/DD.

BNF Notation 4DIGIT “/” 2DIGIT “/” 2 DIGIT

Size 10 Characters

Examples “2002/05/01” May 5", 2002

Data type CMIDecimal

Description A number that may have a decimal point. If not preceded by a minus sign, the

number is presumed to be positive. Examples are "2","2.2" and “-2.2).

BNF Notation [““]*DIGIT [“." *(DIGIT)]

Size 1 to 255 characters

Examples

Data type CMIDirectoryNameFull

Description Fully qualified Windows directory path specification with drive letter(s), directory
path.

August-16-2004 213 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

<Drive Letter>:\<directories>\

Embedded spaces in directory names are allowed. Non printable characters
and<>?*” [\ : are not allowed in directory names. Directory names are
separated by \'s (back slashes). Leading and trailing spaces are not allowed
around the back slashes.

This data type may be up to 255 characters in size.

BNF Notation

2*1(ALPHA) “\” ; Drive volume and root dir
*(*1(ALPHA | DIGIT | FILE_SAFE) “\") ; zero or more directory names

Size

255 characters

Examples

Data type

CMIFeedback

Description

Data type

A structured description of a student response in an interaction. The structure
and contents of the feedback depends upon the type of interaction.

CMIFeedBack sub datatype(s) are as follows (each one matching the various
interaction types):
Choice
Fill-in
Likert
Matching
Numeric
Performance
Sequencing
Single character
True/False

CMIFeedback:Choice

Description

Feedback is one or more single characters separated by a comma. Legal
characters are “0” to “9” and “a” to “z”. If all the characters must be chosen to
assume the feedback is correct, then the comma-separated list must be
surrounded by curly brackets: { }. If there are multiple possible correct
responses, they are separated by semi-colons (“;")s.

BNF Notation

ENUM | (*f SEQ F*(* {" SEQ 1))

Size

255 characters

Examples

“2;3;4;a;c” 2,3,4,a, or c are all valid choices
“{3,4,5}{2,4,b}" 3,4, 5 all selected or 2,4,b all selected are the possible correct
answers.

Data type

“3;4,5” 3,4, or 5 selected are the possible correct answers.

CMIFeedback:Fill-in

Description

A character string of up to 255 characters in length. After the first letter spaces
are significant.

BNF Notation

*255(LCHAR)

Size

255 characters

Examples “The procedure is not correct !”
“The sequence should be 4-3-2-1 instead of 1-2-3-4"
Data type CMIFeedback:Likert

August-16-2004

214 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

Description Single character. Legal characters are “0” to “9” and “a” to “z”.
BNF Notation DIGIT | LOWERCASE
Size 1 character
Examples “1”

e

- 00"}

Data type CMIFeedback:Matching
Description One or more pairs of identifiers. Each identifier is a single letter or number (0 to

9 and a to z). The identifiers in a pair are separated by a period. Commas
separate the pairs. If multiple pairs must be matched correctly to consider the
interaction correct, then the comma separated list of pairs are surrounded by
curly brackets “{ }".

BNF Notation MSEQ | (*{* MSEQ “}"

Size 255 characters

Examples “2.a;3.b;4.c” 2.a,3.b,4.c are all valid matches
“{3.c,4.d,5.e}" The match pairs 3.c,4.d, 5.e (as a group) .
“3.a” The match pair 3.a is the only correct ans wer.
“1.b, 2.e, 3.d” 1.6, 2.e, or 3.d are all possible answers

Data type CMIFeedback:Numeric

Description A valid CMIDecimal value. This element may be up to 255 characters in length.
BNF Notation See CMIDecimal

Size 255 characters

Examples “2.5”

Data type CMIFeedback:Performance

Description This is a very flexible format. Essentially an alphanumeric string of 255
characters or less.

BNF Notation *255(LCHAR)

Size 255 characters

Examples

Data type CMIFeedback:Sequencing

Description A series of single characters separated by commas. Legal characters are “0” to
“9” and “a” to “z". The order of the characters determines the correctness of the
feedback.

BNF Notation (DIGIT | LOWERCASE) 1*(“,” (DIGIT | LOWERCASE))
Size 255 characters

Examples “0,1"
“a,b,c,1,2”
Data type CMIFeedback:True-False
Description A true/false value of type CMIBoolean.
BNF Notation See CMIBoolean
Size 4 characters
Examples See CMIBoolean
Data type CMIFeedbackCSV
Description A structured description of a response in an interaction. The structure and

contents of the feedback depends upon the type of interaction.

August-16-2004 215 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

Data type

CMICSVFeedBack sub datatype(s) are as follows (each one matching the
various interaction types):
Choice
Fill-in
Likert
Matching
Numeric
Performance
Sequencing
Single character
True/False

CMIFeedbackCSV:Choice

Description

Feedback is one or more single characters separated by a comma. Legal
characters are “0” to “9” and “a” to “z”. If all the characters must be chosen to
assume the feedback is correct, then the comma-separated list must be
surrounded by curly brackets: { }. If there are multiple possible correct

responses, they are separated by semi-colons (*;”)s.

BNF Notation

ENUM | ("{" SEQ ¥ (" {' SEQ }))

Size

255 characters

Data type

Examples “2;3;4;a;c” 2,3,4,a, or c are all valid choices
“{3,4,5}:{2,4,b}" 3,4, 5 all selected or 2,4,b all selected are the possible correct
answers.
“3;4;5” 3,4, or 5 selected are the possible correct answers.

CMIFeedbackCSV:Fill-in

Description

A string up to 255 characters in length. After the first letter spaces are
significant. Double quotes are not allowed.

BNF Notation

*255(CSV_OK [*))

Size

255 characters

Examples

Data type

“The procedure is not correct !”

“The sequence should be 4-3-2-1 instead of 1-2-3-4"

CMIFeedbackCSV:Likert

Description

Single character. Legal characters are “0” to “9” and “a” to “z”.

BNF Notation

DIGIT | LOWERCASE

Size

1 character

Examples

Data type

wp

ug”

CMIFeedbackCSV:Matching

Description

One or more pairs of identifiers. Each identifier is a single letter or number (0 to
9 and a to z). The identifiers in a pair are separated by a period. Commas
separate the pairs. If multiple pairs must be matched correctly to consider the
interaction correct, then the comma separated list of pairs are surrounded by
curly brackets “{}". If there are multiple pair combinations that are possible

correct responses then those combinations are separated by semi-colons *;

BNF Notation

MSEQ | (T MSEQ '} *(" "{" MSEQ))

August-16-2004

216 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

Size

255 characters

Examples

“2.a;3.b;4.c” 2.a,3.b,4.c are all valid matches

“{3.c,4.d,5.e};{2a,6.b}" The match pairs 3.c,4.d, 5.e (as a group) or matched
pairs 2.a,6.b (as a group) are the possible correct
answers.

“3.a" The match pair 3.a is the only correct answer.

Data type

CMIFeedbackCSV:Numeric

Description

A valid CMIDecimal value. This element may be up to 255 characters in length.

BNF Notation

CMIDecimal

Size

255 characters

Examples

“2.5"

Data type

3;4;5

CMIFeedbackCSV:Performance

Description

This is a very flexible format. Essentially an alphanumeric string of 255
characters or less. Double quotes not allowed.

BNF Notation

*255(CSV_OK [)

Size

255 characters

Examples

Data type

CMIFeedbackCSV:Sequencing

Description

A series of single characters separated by commas. Legal characters are “0” to

“9” and “a” to “z". The order of the characters determines the correctness of the
feedback.

BNF Notation

(DIGIT | LOWERCASE) 1*(“” (DIGIT | LOWERCASE))

Size

255 characters

Examples

Data type

“0.1"

“a,b,c,1,2”

CMIFeedbackCSV:True-False

Description

A vocabulary limited to on of the following values: “true” or

“false”. The values are case insensitive and only the first character is
significant. (But it is recommend to use the CMIBoolean values for greater
compatibility)

BNF Notation

(‘U T || “F") *3(CSV_OK)

Size

4 characters

Examples

Data type

o

“False”

CMIFileNameFull

Description

A fully qualified Windows file specification with drive letter(s), directory path,
filename, and file extension (if any).

<Drive Letter>:\<directories>\<filename>

Embedded spaces in filenames and directory names are allowed. Non printable
characters and <> ? *” [/ \ : are not allowed in filenames or directory names.
Filename and Directory names are separated by \'s (back slashes). Leading
and trailing spaces are not allowed for file name.

August-16-2004

217 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data type

Data Types
BNF Notation 2*1(ALPHA) “\” ; Drive volume and root dir
*(*1(ALPHA | DIGIT | FILE_SAFE) “\") ; zero or more directories
*1(ALPHA | DIGIT | FILE_SAFE) ; flename
Size 255 characters
Examples BB:\some dirl\some dir 2\file.ext

C:\

CMIFormatCSV

Description

A tabular representation of data in a text string. (Or the Contents of a CSV
(Comma-Separated Value) formatted text file)

This datatype is divided into records and those records into fields (i.e. “rows
and columns”). A record is the data found on a single line (using a carriage-
return/line feed as a end-of-line marker). A field is the data that is found
between commas “,"s (comma delimited) on the line. Field data may or may
not be enclosed in double-quotes (“”). Field data must be enclosed in double
quotes if it contains leading/trailing spaces or commas (“,”s). Leading/trailing
space on unquote field data is ignored. Field data may not contain double-

quotes.

The first line is called the “header” and contains a comma-separated list of the
field identifiers. Field identifiers are not data but specify the name and position
of each field in the following records (lines). Note the first two examples below.
Both examples represent the same data even though the order is different.
Note that a system interpreting CSV data must be able to parse the data in both
cases and yield the same result.

Refer to the BNF notation below (and section 10.0) for more detail.

BNF Notation

CSV_HEADER * CSV_RECORD

Size

Undefined

Examples

Field#3Name,Field#2Name,Field#1Name, Field#4Name

Field#3-Recl-Data, Field#2-Recl-Data, Field#1-Recl-Data, Field#4-Recl-Data
“Field#3-Rec2-Data”, Field#2-Rec2-Data, Field#1-Rec2-Data, Field#4-Rec2-Data
Field#3-Rec3-Data, Field#2-Rec3-Data, Field#1-Rec3-Data, Field#4-Rec3-Data

Data type

“Field#1Name”,"Field#2Name”,"Field#3Name”,"Field#4Name”

Field#1-Recl-Data, Field#2-Rec1-Data, Field#3-Recl-Data, Field#4-Recl-Data
Field#1-Rec2-Data, Field#2-Rec2-Data, Field#3-Rec2-Data, Field#4-Rec2-Data
Field#1-Rec3-Data, Field#2-Rec3-Data, Field#3-Rec3-Data, Field#4-Rec3-Data

CMIFormatINI

Description

Contents of an “AICC style” INI formatted text file (or text string). The format
used in this specification is a variation of the Microsoft WindowsO *.INI file
format. It is organized as follows:
- Groups
Keywords
Comments
“Free Form” Groups

Groups are names enclosed in square brackets “[* “]”. Groups contain
keywords. Groups are essentially records and keywords are essentially fields.
Groups must be unique. Should a Group name be duplicated, only the first
instance is used. Each keyword within a single group must be unique. If
keywords are duplicated within a group, only the first instance is used. (See
datatype CMIGrouplINI.)

August-16-2004

218 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

Keywords are assigned values. (i.e. “keyword = keyword value”). Leading and
trailing “linear whitespace” (tabs and spaces) are not included in the value of
keyword.

Comments are any line within a group (or any line positioned before all groups)
that has a semi-colon “;” as its first non-whitespace character. Comments are
text that is of use to a human viewing a file. Programs processing the data in
the file ignore them.

“Free-Form” Groups represent the variation from Microsoft WindowsO *.INI
file format. They are delimited in the same manner as Groups (with a name
enclosed in square brackets), but the contents of this kind of group can contain
free formatted text and it not restricted to “keyword=keyword value” format.
Another distinction is that all the data contained in a “Free- Form” Group is
treated as a single data element. The data begins at the first non-whitespace
character after the group name and ends with the last non-whitespace
character before the next group name (or end of buffer/file). Leading and
trailing whitespace are not included in the value of a “Free-Form” group.
Square brackets (“[]”) are not allowed. (See datatype
CMIGroupFreeFormiNI.)

See BNF notation below (and in section 10.0) for more details on formatting

BNF Notation

*(WHITESPACE | INI_COMMENT) *(CMIGroupINI | CMIGroupFreeFormiNI)

Size

Undefined

Examples

; Comments can appear before
[Core]

; and after group names.

; Comments can also appear before
SCORE =87

; and after keywords.

TIME = 00:25:30

; Their existence is ignored

LESSON_STATUS=|
; CORE_VEDNOR is a “Free-form” group

[CORE_VENDOR]

) 0.0.0.0.0.0.0.0.0.0.0.0.09.0.0.0.00.0.060.090.00604
0. 9,0.0.0.0.9.0.0.9,.0.9.0.0.9.0.0.9.9.0.9.0.0.0.0.9.6.0.0 6004
XXXXXXXXX

[CORE_LESSON]

Data type

CMIGroupINI

Description

An INI “group”. This element is patterned after a “section” contained a Microsoft
Windows INI format file.

An INI group consists of the following elements:
1. One group name enclosed in square brackets (“[")
2. Zero or more Keyword/value pairs (i.e. “keyword = value”)
3. Zero or more comments. (a comment consists of a line with the first
character being a semi-colon “;”) Comments are not processed.

Each of the above elements (Keyword/value pair, comment, section name)
exists on a single line with leading trailing whitespace. Blank lines may existing

August-16-2004

219 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

between element.

Please refer to BNF notation below (and in Section 10.0) for a more detailed
definition of this type.

BNF Notation

INI_SECTION *(INI_NAME_VALUE | INI_COMMENT | WHITESPACE)

Size

Undefined

Examples

Data type

[CORE]

Student_ID = jones-123
Student_NAME = Jones, Jackie J.
LESSON_STATUS = NA A
SCORE=
TIME = 00:00:00

Credit = Credit

[Some section]
keywordl = value 1

CMIGroupFreeFormiINI

Description

A Freeform INI “group”. This data type has a “group name” (like CMIGroupINI)
but does not require the contents of the group to have name/value pairs.

An Freeform INI group consists of the following elements:
1. One group name enclosed in square brackets (“[]") followed by a
carrige return/linefeed.
2. Zero or more characters of INI_FREEDATA

Please refer to BNF notation below (and in Section 10.0) for a more detailed
definition of this type.

BNF Notation

INI_SECTION *(INI_FREEDATA)

Data type

Size Undefined

Examples [CORE_VENDOR]
XXXXXXXXXXXX
01010101010101

[CORE_VENDOR]
keywordl = value 1

CMilldentifier

Description

A string with no white space or unprintable characters in it. Maximum of 255
characters.

BNF Notation

*255(VIEWABLE)

Size Limit 255 characters

Examples “Student#* (&% (#*(&Q”
“Student#23423”

Data type CMilldentifierDevID

August-16-2004

220 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types
Description Up to 255 alphabetic, numeric, or “”_ - {}” characters with no spaces.
BNF Notation *255(DIGIT | ALPHA | “" | ““ 1Y | (")
Size Limit 255 characters
Examples “{E8128C30-6BF8-11cf-96FC-0020AFED9AG5}”
Data type CMlldentifierGUID
Description A 128-bit value that is universally unique. This 128-bit value can be generated
using algorithms described in any of the following documents:
ISO-11578

Draft RFC UUIDs and GUIDs by Paul J. Leach and Rich Salz.

The value is represented by 5 hexadecimal numbers separated by dashes. The
value may or may optionally be enclosed in curly braces “{}".

See BNF notation below for detailed formatting.
BNF Notation [“{“] BHEX “-“ 4HEX ™" 4HEX “"“ 4HEX “* 12HEX ['}]

Size 36 characters
Examples “{E8128C30-6BF8-11cf-96FC-0020AFED9AB5}”
Data type CMlldentifierINI
Description A string of up to 255 characters with no whitespace. Double quote (“)s are not
allowed.
BNF Notation *255(DIGIT | ALPHA | EXTENDED | CSV_SAFE)
Size 255 characters
Examples “Jstudent _1234"
“Student-12"
“STUD 1"
- _ _______0___00_00_0___0__"]
Data type CMlinteger
Description An integer number from 0 to 65536.
BNF Notation 5*1(DIGIT)
Size 5 characters
Examples 65000
TR
- _______0___0_0_00_0__0_0__"]
Data type CMiILevel
Description A string indicating the level of features in a course structure. Limited to the

following vocabulary of values:
“1” - Level 1 course structure
“2" - Level 2 course structure
“3a - Level 3a course structure
“3b” - Level 3b course structure

BNF Notation “1"]"2" | “3a" | “3b”
Size 2 characters
Examples “3a” Level 3a course structure
“1” Level 1 course structure
- 000"}
Data type CMILogic
Description A logical statement following the rules described in section 4.2.3.
BNF Notation *(Term *(Operator Tern))
Size 255
Examples “(A5=passed)&A8”

“{A4,A3,A6}&(B2|B3)"
August-16-2004 221 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

| Data Tiies ’
Data type CMIScorelNI
Description Empty string (*") or the following:

A score made up of up to three decimal numbers, separated by commas.
The order is significant. The first number represents the “raw” score, the
second number represents the maximum possible score, and the third
number represents the lowest possible score. Commas may have leading
and trailing spaces.

BNF Notation (CMIDecimal *2(*LWS *“” *LWS CMIDecimal)) | "

Size 255 Characters
Examples “75,100,0” - Raw score of 75, maximum of 100, minimum of 0
‘75" - Raw score of 75
“75,100” - Raw score of 75, maximum of 100
- No score
I
Data type CMISlIdentifier
Description CMI System ldentifier: Alphanumeric group of characters that begins with a

single letter: A, B, or J and ends with an integer number. One to five numerals
may follow the letter.
BNF NOtatlon (uAH | HBH | u‘]n | uan | ubn | ujl!) 1*5(DIGIT)

Size 6 characters
Examples “a01”
“B00005”
317
- 0000000000000}
Data type CMISInteger
Description A signed integer number from —32768 to +32768.
BNF Notation (-] “+") 1*5(DIGIT)
Size 7 characters
Examples “-16412"
G5

Description | set of ASC
Bindings Used | *255(LCHAR)
255 CHARACTERS

Data type CMIString255CSV

Description A set of characters with a maximum length of 255 characters. Carriage return,
line feed, and double-quotes (“)s are not allowed.

Bindings Used | *255(CSV_OK | ")

Size 255 characters

Examples

Data type CMIString255INI

Description A set of characters with a maximum length of 255.. Carriage returns and
linefeeds are not allowed. All leading and trailing linear whitespace (tabs or
spaces) are discarded if present.

August-16-2004 222 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types
Bindings Used | (*1(VIEWABLE) *(*LWS *1(VIEWABLE|LWS))) | “
Size 255 characters
Examples

Data type CMIString4096CSV

Description A set of characters with a maximum length of 4096 characters. Carriage return,
line feed, and double-quotes (“)s are not allowed.

BNF Notation *4096(CSV_OK | “")

Size 4096 characters

Examples

Data type CMIString4096INI

Description A set of characters with a maximum length of 4096 characters. Square brackets
(“[]17"s) are not allowed. All embedded whitespace is included. All leading and
trailing whitespace is discarded if present.

BNF Notation (*1(INI_OK | “=") *(*WHITESPACE *1(INI_OK|[“="))) | “

Size 4096 characters
Examples

Data type CMIStudentName

Description Last name, first name and middle initial. Last name and first name are
separated by a comma. Alphabetic, space, period, dash, and upper-ASCII (per
1ISO-8859) characters are allowed. Embedded spaces are also allowed.

BNF Notation (ALPHA | EXTENDED)

*(ALPHA | EXTENDED | “.” | “-“| LWS) *”
*(LWS) (ALPHA | EXTENDED)
*(ALPHA | EXTENDED | “.” | “-“| LWS) (ALPHA | EXTENDED)
Size 255 characters
Examples “Hyde, Jack Q.”
“Two-names, Kelly*
Wa "
“Schmidt, JF”
- ____0_0_00_00_0__0_0___"]
Data type CMITime
Description A chronological point in a 24 hour clock. Identified in hours, minutes and

seconds in the format: HH:MM:SS.SS Hours and seconds shall contain two
digits. Seconds shall contain 2 digits with an optional decimal point and up to
two additional digits.

BNF Notation 2(DIGIT) “" 2(DIGIT) “" 2(DIGIT) [*." 1*2(DIGIT)]

Size 11 characters
Examples “12:02:45.56”
“12:03:45"

August-16-2004 223 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

| Data Tiies ’

Data type

CMITimespan

Description

A length of time in hours, minutes, and seconds shown in the following
numerical format:

HHHH:MM:SS.SS.
Where:

HHHH = Hours. Hours shall contain a minimum of 2 digits and maximum of
4 digits. The range of allowable values for hours is 00 — 9999.
Values for hours may have leading zeros.

MM = Minutes. Minutes shall consist of 2 digits. The range of allowable
values for minutes is 00 — 59.

SS = Seconds. Seconds shall consist of 2 digits. The range of
allowable values for seconds is 00 — 59.

.SS = Tenth/Hundredths of Seconds. This is the only optional element
for this data type. This element shall consist of 1 to 2 digits. The
range of allowable values is 01 - 99. Note that single digit values
have an implied trailing zero (e.g. “.1" and “.10" represent the
same value)

BNF Notation

2*4(DIGIT) “" 2(DIGIT) " 2(DIGIT) [1*2(DIGIT)]

Size

13 characters

Examples “12:02:45.56"
“0012:02:45.56"
Data type CMlurl
Description A fully qualified URL (Uniform resource locator)

BNF Notation

PROTOCOL “//” (IP | DOMAIN_NAME) ["" PORT] URL_PATH

Size

255 characters

Examples “http://somedomain.org/dirl/index.html|”
“https://somedomain.org/dirl/index.html”

Data type CMIurlEncNVPairList

Description A list of name/value (i.e. “name=value”) pairs separated by ampersands (“&” s).

The “name” represents data element (or variable) name and the “value” is the
value held by the “name” variable.

Both the “name” and the “value” are URL-encoded (see section 6.4.1.1)
representations of the actual values.

BNF Notation

(NVCHAR)"="1(NVCHAR) *("&” 1*(NVCHAR)"="1*(NVCHAR))

Size

255

Examples Namel=valuel&Name2=value2
Data type CMIVersionNumber
Description A string indicating which version of this specification. (CMIO01 — CMI Guidelines

for Interoperability) is implemented. Values are limited to the current and
previously released version numbers (see BNF notation below).

August-16-2004

224 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types
BNF Notation “.0"|“1.1"]| “1.2" | “1.3" | “1.4" | “1.5" | “1.7" | “1.8" | “1.9" | “2.0" | “2.2" | “3.0" |
“3.0.1" | “3.4" | “3.5" | “4.0"
Size 255 characters
Examples “4.0"
“3.5”
- 00"}
Data type CMIVocabulary
Description Used to attach specific vocabularies within contexts in a schema. Vocabulary

words must be complete and exact matches to those below.

See the each sub data type below for the valid list of vocabularies.
Mode
Status
Exit
Credit
Entry
Interaction
Result
Time Limit Action

Data type CMIVocabulary:Credit
Description A specific vocabulary limited to on of the following values: “credit” or
“no-credit”. Case sensitive
BNF Notation “credit” | “no-credit”
Size 9 characters
Examples “credit”
“no-credit”
e
Data type CMIVocabulary:Credit-INI
Description A vocabulary limited to on of the following values: “credit” or

“no-credit”. The values are Case insensitive and only the first character is
significant. (But it is recommend to use the complete values for greater
compatibility)

BNF Notation (“C”] “c” | “n” | “N™) *9(INI_OK)

Size 10 characters
Examples “c”
“Credit”
“No-"
-]
Data type CMIVocabulary:Entry
Description A specific vocabulary limited to on of the following values: “ab-initio”,
“resume”, or " - (empty string)
BNF Notation “ab-initio” | “resume” | ™
Size 9 characters
Examples “ab-initio”
‘resume”
]
Data type CMIVocabulary:Exit
Description A specific vocabulary limited to on of the following values: “time-out”, “suspend”,
“logout”, or " - (empty string)
BNF Notation “time-out” | “suspend” | “logout” | ""
Size 8 characters

August-16-2004 225 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types
Examples “time-out”
“logout”
e
Data type CMIVocabulary:Interaction
Description A specific vocabulary limited to on of the following values: “true-false”
“choice”, "fill-in”, “matching”, "performance”, "likert", "sequencing", or "numeric".
BNF Notation “true-false” | “choice” | “fill-in” | “matching” | "performance” | "likert" |
"sequencing"| "numeric"
Size 11 characters
Examples “matching”
"numeric"
-]
Data type CMIVocabulary:Mode
Description A specific vocabulary limited to on of the following values: “normal”, “review”, or
“browse”. All values are case sensitive.
BNF Notation “normal” | “review” | "browse”
Size 6 characters
Examples “normal”
“browse”
e
Data type CMIVocabulary:Result
Description A specific vocabulary limited to on of the following values: “correct”
“wrong”, “unanticipated”, “neutral”, or a valid CMIDecimal value.
BNF Notation “correct” | “wrong” | “unanticipated” | “neutral” | CMIDecimal
Size 255 characters
Examples “correct”
“3.5”
.
Data type CMIVocabulary:Status
Description A specific vocabulary limited to on of the following values: “passed”,
“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”
BNF Notation “passed” | “completed” | “failed” | “incomplete” | “browsed” | “not attempted”
Size 13 characters
Examples “passed”

Data type CMIVocabulary:Time Limit Action

Description A specific vocabulary limited to one of the following values: “exit,message”,
“exit,n0 message”, “continue,message”, or “continue,no message”

BNF Notation “exit,message” | “exit,no message” | “continue,message” | “continue,no
message”

Size 16 characters

Examples “exit,message”

“continue,no message”

Data type CMIVocabulary:Why Left

Description A specific vocabulary limited to following values: “student selected”, “lesson
directed”, "exit”, or “directed departure”.

BNF Notation “student selected” | “lesson directed” | "exit” | “directed departure”.

Size 18 characters

Examples “student selected”
"exit”

August-16-2004 226 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types
“directed departure”.

Data type CMIVocabularyINI
Description Used to attach specific vocabularies within contexts in a schema. Vocabulary
words must be complete and exact matches to those below.

See the each sub data type below for the valid list of vocabularies.
Mode
Status
Exit
Credit
Entry
Interaction
Result
Time Limit Action

Data type CMIVocabularyINI:Credit

Description A vocabulary limited to on of the following values: “credit” or
“no-credit”. The values are Case insensitive and only the first character is
significant. (But it is recommend to use the complete values for greater
compatibility)

BNF Notation (“C" [“c” | “n"] “N™) *9(IN]_OK)

Bindings Used | File, HACP
Size 10 characters
Examples “c”
“Credit”
N
- 00}
Data type CMIVocabularyINI:Entry
Description A vocabulary limited to on of the following values: “ab-initio”,

“resume”, or " - (empty string). The values are Case insensitive and only the
first character is significant. (But it is recommend to use the
CMIVocabulary:Entry values for greater compatibility)

BNF Notation (“A" | “a "] “R" | “r") *9(INl_OK)

Size 10 characters
Examples “A”
‘resume”
]
Data type CMIVocabularyINI:Exit
Description A specific vocabulary limited to on of the following values: “time-out”, “suspend”,
“logout”, or " - (empty string). The values are Case insensitive and only the first

character is significant. (But it is recommend to use the CMIVocabulary:Exit
values for greater compatibility)

BNF Notation (‘UL ST fs™) *8(INL_OK)
Size 8 characters
Examples “Time-oUT”"
L
“suspend”
- _00__000_00_00_0__0_0___"]
Data type CMIVocabularyINl:Interaction
Description A specific vocabulary limited to on of the following values: “true-false”

“choice”, “fill-in”, “matching”, "performance”, "likert", "sequencing"”, or "numeric".

August-16-2004 227 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

The values are case insensitive and only the first character is significant. (But it
is recommend to use the CMIVocabulary:Interaction values for greater
compatibility)

Data type

BNF Notation ¢ et " | et T STt T CC LR M7 P 'L | ST "N
*11(CSV_OK)

Examples “MATCHING”
o
“performance”

CMIVocabularyINI:Mode

Description

A specific vocabulary limited to on of the following values: “normal”, “review”, or
“browse”. The values are case insensitive and only the first character is
significant. (But it is recommend to use the “complete” values for greater
compatibility)

BNF Notation

“n” [“r" | "b” | "N | “R” | "B") *7(INI_OK)

Size

8 characters

Examples

Data type

“normal”

“g”

CMIVocabularyINI:Result

Description

A specific vocabulary limited to on of the following values: “correct”
“wrong”, “unanticipated”, “neutral”, or a valid CMIDecimal value. The values
are case insensitive and only the first character is significant. (But it is

recommend to use the “complete” values for greater compatibility)

BNF Notation

(" "W’ | “u" [“n" |"C" | "W" | “U" | “N") *22(CSV_OK)) | CMIDecimal

Size

255 characters

Examples

Data type

“correct”

CMIVocabularyINI:Status

Description

A specific vocabulary limited to on of the following values: “passed”,
“completed”, “failed” , “incomplete”, “browsed”, or “not attempted”.

The values are case insensitive and only the first character is significant. (But it
is recommend to use CMIVocabulary:Status values for greater compatibility)

Data type

BNF Notation (“PH | “p” | HN” | HnH | HFH | Hfﬂ | HC” | “CH | “IH | Hii! | HBH | Hb") *12(INI_OK)
Size 13 characters
Examples “pass”

upH

“Not Attempted”

“browsed”

CMIVocabularyINI:Time Limit Action

Description

A specific vocabulary limited to following values: “exit,message”, “exit,no
message”, “continue,message”, or “continue,no message”.

More explicitly : “exit” or “continue” followed by a comma (with leading trailing
spaces) , further followed by “message” or “no message”. Each of the 4 values
are case insensitive and only the first character is significant.

(Note: It is recommend to use CMIVocabulary:Time Limit Action values for
greater compatibility).

BNF Notation

("¢ | "E" [["C") *10(CSV_OK) *(LWS) *," *(LWS)

August-16-2004

228 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

(uMn | umn | nNu | unu) *10(CSV_OK)

Size 255 characters
Examples “E,n”
“exit,no message”
“continue , no message”
Data type CMIVocabularyINI:Why Left
Description A specific vocabulary limited to following values: “student selected”, “lesson

directed”, "exit”, or “directed departure”. Each of the 4 values is case
insensitive and only the first character is significant.

(Note: It is recommend to use CMIVocabulary:Why Left values for greater
compatibility).

BNF Notation

(“e” | "E” | "s" | “L" | “I"| "D" | "d") *17(CSV_OK)

Size

18 characters

Examples

Data type

“student selected”

g

“Directed”

HacpCommand

Description

Message type included in a HACP request message. See section 6.4 for a
description of each HACP message type.

This datatype has a vocabulary of the following (case insensitive) values:
GetParam
PutParam
ExitAU
Putinteractions
PutComments
PutPath
PutPerformance

BNF Notation

(“GetParam| “PutParam” | “ExitAU” | “Putinteractions” | “PutComments” |
“PutPath” | “PutPerformance” | “getparam” | “putparam” | “exitau” |
“putinteractions” | “putcomments” | “putpath” | “putperformance”)

Data type

Size 15 characters
Examples “1”
0

HacpErrorNumber

Description

Numbers corresponding to error conditions (see datatype HacpErrorNumber) in
a HACP response message. See section 6.4.8 for a description of HACP error
conditions.

The HacpErrorNumber(s) corresponding to (datatype) HacpErrorText are as
follows:

0 - Successful

1 - Invalid Command

2 - Invalid AU-Password

3 - Invalid Session ID

August-16-2004

229 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

Data Types

BNF Notation 0" “17|“2"]“3")
Size undefined
Examples “1”

0

- 000"}

Data type HacpErrorText
Description Text describing error conditions corresponding to error numbers (see datatype

HacpErrorNumber) in a HACP response message. See section 6.4.8 for a
description of HACP error conditions.

BNF Notation (“Successful” | “Invalid Command” | “Invalid AU-Password” |
“Invalid Session ID")

Size 1

Examples “1”
0

Data type HacpRequestMessage
Description
BNF Notation
Size undefined
Examples “1”
0

Data type HacpResponseMessage
Description
BNF Notation
Size undefined
Examples “1”
0

August-16-2004 230 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

10.0 Augmented Backus-Naur Form (BNF) Notation

Backus-Naur Form (BNF) is a structured notation for describing dataformats. BNF has many variations. The BNF
described in this section is an augmented form of BNF partially derived from RFC1945 - Hypertext Transfer
Protocol -- HTTP/1.0. (Please note that this section will be the authoritative source for interpreting BNF notation in
this document).

The BNF notation described in this section is used to define the formatting rules for all datatypesincluded this
specification.

10.1 Augmented Backus-Naur Form (BNF) Constructs

Thisaugmented BNF used in this specification includes the following constructs:

NAME = DEFINITION

The name of aruleissimply the nameitself (without any enclosing "<" and ">") and is separated from its
definition by the equal character "=". Whitespaceis only significant in that indentation of continuation
linesisused to indicate arule definition that spans more than one line. Certain basic rules are in uppercase,
such as SP, LWS, CRLF, DIGIT, ALPHA, etc. Angle brackets ("<" and ">") are used within definitions
whenever their presence will facilitate discerning the use of rule names.

"literal”
Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.
rulel|rule2
Elements separated by abar ("1") are alternatives, e.g. “Yes|no" will accept yesor no.
(rulelrule2)
Elements enclosed in parentheses are treated as asingle element. Thus, "(elem (foo | bar) elem)" alowsthe
token sequences "elem foo elem” and "elem bar elem".
*rule
The character "*" preceding an element indicates repetition. The full form is"<n>*<m>element" indicating
at least <n> and at most <m> occurrences of element. Default values are 0 and infinity so that "* (element)”
allows any number, including zero; "1*element” requires at least one; and "1* 2element"” allows one or two.
[rule]
Square brackets enclose optional elements; "[foo bar]" is equivalent to "* 1(foo bar)".
Nrule
Specific repetition: "<n>(element)" is equivalent to "<n>*<n>(element)”; that is, exactly <n> occurrences
of (element). Thus 2DIGIT isa2-digit number, and 3ALPHA isastring of three alphabetic characters.
; comment

A semi -colon, set off some distance to theright of rule text, starts acomment that continues to the end of
line. Thisisasimple way of including useful notesin parallel with the specifications

August-16-2004 231 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

10.2 Basic BNF Rules

The following BNF rules are used to describe the more common data types (in this document) are also as the basic
“building blocks” used to construct more complex rulesin the following sections. All ASCII character code values
shown arein decimal numbers. All extended range ASCII character codes (128-256) must conform to | SO-8859
character sets.

CR = < ASCI| Character (13) -- carriage return >
LF = < ASCI| Character (10) -- linefeed >
SP = < ASCI| Character (32) -- space >
TAB = < ASCI| Character (9) -- horizontal-tab >
<"> = < ASCI| Character (34) -- double-quote mark >
CRLF = CR LF
UPPERCASE = < any ASCI| uppercase letter "A".."Z" >
LOVERCASE = < any ASClI| |owercase letter "a".."z" >
CTL = < Control ASCII characters (0 — 31) and DEL (127) >
CTLEXT = < Extended ASCI| control characters 128 — 159 >
EXTENDED = < Extended ASCI| characters (160 — 255).
Vi ewabl e per |SO 8859 defined character sets>
ALPHA = UPPERCASE | LOWERCASE
DAT = < any ASCII digit "0".."9" >
HEX =bDgT | “A | *B | “C | “D | “E | “F
ESCAPE = “9% HEX HEX
LCHAR = < All ASCII| characters except CTL>
| NTEGER = 1*DAT
DECI MAL =[“-“]*DIG T ["."] 1*DIAT
NUMERI C = I NTEGER | DECI MAL
LWS = SP| TAB
VWS = CR| LF
WHI TESPACE = SP| TAB| CR| LF
I D = 1*255(DIGA T | ALPHA | “_ " | “-*)
DATE =4DIGT “/” 2DIGT “/" 2DIGAT
TI ME =(2DDGAT | 4 DAT) “:” 2DIGT “:" 2DIGAT [“.” 1*2(DIGAT)]
STI ME =2DIGT “:” 2DIGT “:" 2DIGAT
FILELSAFE = “.7|7;7 | “{ | “} | “# | “~" | " | “1" | “@ | “# |
0 T R - G HD A R A S I
Nl _UNSAFE = “[“ | “]" | “="
I NI _SAFE EEES 0 I W I A L L N R S
SR A S S 0 A e A A B A I e R BT R I U IR
AT R& ot) T
CSV_SAFE O R L I A I I N I T I
B R T T I I R B < A B I B B L
R I G b R I (e H L A N Y O
SPECI AL = I NI _SAFE | | NI _UNSAFE
VI EWABLE = ALPHA| DI G T| EXTENDED| SPECI AL

August-16-2004 232 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

; URL & HTTP Specific BNF

SAFE
UNSAFE
EXTRA

SAFE_URL
EXTRA_URL

NVCHAR

PROTOCOL

| P

DOVAI N_NAVE
PORT
SEGVENT
URL_PATH
URL

S I B
S I R G B B

= " $H | " - " | " _H | " @ | " i ” | " &H " +H
SRR I B I B R B

= ESCAPE | ALPHA | DIG T | EXTENDED | SAFE
= < Case insensitive “http” or “https” >

= 1*3(DIGET) 3(“.” 1*3(DIAT))

= 1*(ALPHA| “-*) 1*(“."” 1*(ALPHA “-“)
=*DIAT

= *(ALPHA | DIG T | SAFE URL | EXTRA URL |

; Nanme/Val ue Pair |ist

NVPRLI ST

August-16-2004

= 1* (NVCHAR) “ =" 1* (NVCHAR)

233

* (“gr

“/” *(SEGMENT) *(“/” *(SEGVENT)
PROTOCOL “://” (1P | DOVAI N_NAVE)

)
[“:

ESCAPE)

PORT] URL_PATH

1* (NVCHAR) “ =" 1* (NVCHAR))

CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

10.3 AICC Style INI Related BNF Rules

; nhon-whi tespace characters allowed in IN format

INI_OK = ALPHA| DI G T| EXTENDED| | NI _SAFE

I NI _CMT_SAFE = <> N |ty T
T I T G e N B B IR
L@ |] S| | | e
S B O B L B e A e

INl_CMI_OK = ALPHA| DI Gl T| EXTENDED| | NI _CMT_SAFE

; text string with enbedded spaces

I NI _NV = *1(VIEWABLE) *(*LWS5 *1(VI EWABLE))

; a keyword/value pair i.e. “x = y”

I NI _NAVE_VALUE = *LWS INI_NV *LWS “=" *LWS I NI _NV *LWS CRLF
;an I Nl comment

I NI _COMVENT = *LWs “;” *(VI EWABLE|] LW8) CRLF

; AICC style INl Goup Name

I NI _SECTI ON = *LWS “[“ 1*(INI_OK) “]1" *LW5 CRLF

; AICC style INI “free forni data
I NI _FREEDATA = *WHI TESPACE *(INI_OK | “=" | WHI TESPACE) *WH TESPACE CRLF

; Normal Group
CM G oupl NI

I NI _SECTI ON *(1 NI _NAME_VALUE | | NI _COVMENT | WHI TESPACE)

; Free-Form G oup
CM GroupFreeForm NI = | NI _SECTI ON * (| NI _FREEDATA)

; Definition of AICC style IN file format
CMFormat Nl = *(WHI TESPACE | | NI _COMMENT)
*(CM Groupl NI | CM GroupFreeFormn NI')

; Definition of AICC style IN file format
Al CC_I NI _FORMAT = *(WHI TESPACE | | NI _COMVENT)
*(INI_SECTI ON (| NI _FREEDATA |
* (1 NI _NAME_VALUE |
I NI _COMMVENT |
V\HI TESPACE)

)
*(\WHI TESPACE | | NI _COMVENT)

August-16-2004 234 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

10.4 HACP Related BNF Rules

: List of valid version nanes

CM VER

=*"“2.0" | “2.1" | *“2.2" | *3.0"] “3.0.1"|

“3.0.2"| “3.4"| “3.5" | “4.0"
; HACP Request Message related constructs
vCM VER = < url-encoded, CM VER >
NmMCOMVAND = < url-encoded, case insensitive string, “comrand” >
NMVERSI ON = < url-encoded, case insensitive string, “version” >
NnSESSI ON_| D = < url-encoded, case insensitive string, “session_id” >
NmAU_PASSWORD = < url-encoded, case insensitive string, “AU PASSWORD >
NmAlI CC_DATA = < url-encoded, case insensitive string, “AlCC DATA" >
VPASSWORD = < Url-encoded, *255(LCHAR) >
VSESSI ON_|I D = < Url-encoded, *255(LCHAR) >
VAI CC_DATA = < Url-encoded, *AlICC_I N _FORMAT >
vHACP_COMMAND = “GetParam “PutParant | “ExitAU’ | “Putlnteractions” |

“Put Comrents” | “PutPath” | “PutPerformance”

; == HACP Response Message related constructs ==

NnT Al CC_DATA = <case insensitive string “Al CC_DATA" >

Nnr Error _Text = <case insensitive string “error_text” >

Nmr Er r or = <case insensitive string “error” >

Nmr Ver si on = <case insensitive string “version” >

Vendor _Error_Text = *255(1 Nl _OK)

VERROR_TEXT = “Successful” | “Invalid Command” | “lnvalid AU Password” |
“lInvalid Session ID’

vERROR_CODE =“0" | “17 | “2" | “3"

NVPAI R1 = NmCOMMAND “ =" vHACP_COMVAND

NVPAI R2 = NmVERSI ON “=" vCM VER

NVPAI R3 = NnSESSION_ID “=" vSESSION_ID

NVPAI R4 = NmAU_PASSWORD “=" vAU_PASSWORD

NVPAI R5 = NmAlI CC_DATA “=" vNmAlI CC_DATA

; Definition of HACP request Message

HACP_REQUEST = NVPAIRL “&" NVPAIR2 “& NVPAIR3 [“& NVPAIR4] “& NVPAIR5

<All NVPAIR s are “&" separated and can be in any order>
<NVPAIR5 is not required for CGetParam Messages>

; HACP response Message
HACP_RESPONSE = Nnr Error “=" vERROR CODE CRLF
[NnrError_Text “=" vERROR _TEXT CRLF]
[NnrVersion “=" CM VER CRLF]
[Nnr Al CC_DATA “=" [AICC_IN _FORVAT]]
< Al CC_DATA nane/value pair is required only
for GetParam response nessages >

August-16-2004 235 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

10.5 CSV Related BNF Rules

FI ELD_NAVE = (*255(ALPHA| DI Gl T| CSV_SAFE)) |
< Reserved Al CC Header Nane >

; Al chars except CR LF, DEL, and <">

CSV_OK = ALPHA | DIG T | EXTENDED | LWS | CSV_SAFE

; Quoted or not quoted — enbedded commas are all owed inside quoted
CSV_ELEMENT = (*CSV_.OK | (<"> *(CSV.XK | “,") <">))

; Quoted or not quoted

HEADER NAME = (FIELD NAME | (<"> FIELD NAME <">))

; Conma separated |ist

CSV_HEADER = (LW5 HEADER NAME LWS *("," LWS HEADER NAME LWS)) CRLF
; Comma separated list with leading/training |inear whitespace
CSV_RECORD= (LWS CSV_ELEMENT LWS *("," LWS CSV_ELEMENT LWS)) CRLF

; AlCC Commm Separated Values (CSV) Format definition
CSV_FORMAT = CSV_HEADER * CSV_RECORD

10.6 “AICC Script” BNF Rules

; Format rules for an “AlICC script” — statenment for |ogical expressions
; Used in conpletion requirenments and/ or Perquisites

Expr = *(Term *(Operator Tern))
Syst em D = (" A” | " B” | " J” | " a” | " b” | Hj ”) 1* 5(Dl G T)
Status = “passed” | “conpleted” | “failed” | “inconplete” |
“browsed” | “not attenpted” | “P" | “p" | “C | *“c” |
“ETOLOCfTO 1T it | BT] b | N | “n”
Oper at or =& | |
Fact or = Systenl D |
(H(H Expr *(" , ” Expr) Ll)”) |
(H{H EXpr *(" , ” EXpr) ”}71) |
(DIGT *** “{* Expr *(" Expr) "}")
n- Term = Factor *(Operator Factor)
unaryTerm = “~" Factor
equTerm = System D “=" Status
Term = n-Term| unaryTerm | equTerm

August-16-2004 236 CMI001 Version 4.0

AICC -

CMI Guidelines for Interoperability

10.7 Interactions related BNF Rules
PERF_SAFE = ‘- "
PERF_CK = DIAdT | ALPHA | LWS | PERF_SAFE
PERF_VAL = 1*PERF_OK
ENUM = LOANERCASE | DIA T
SEQ = ENUM 1*(“,” ENUM
MSEQ = (ENUM “.” ENUM *(“,” (ENUM “.” ENUM)
PSEQ =([ID*“.”] PERF_VAL) *(“,” ([ID*“.”] PERF_VAL))
; True- Fal se type
T _TYPE = 0”1 |t || T TR
; Choi ce type
C_TYPE = ENUM | (“{“ SEQ “}” *(“;” “{“ SEQ“}"))
;Fill-in type
F_TYPE = [“<case>"] 1*CSV_K
; Mat chi ng Type
M_TYPE = MSEQ | (*“{" MSEQ “}” *(*;" “{* MSEQ “}"))
; Performance Type
P_TYPE = PSEQ | (“{" PSEQ “}” *("“;” “{“ PSEQ “}"))
; Li kert Type
L_TYPE = ENUM
RESPONSE = T.TYPE| CTYPE| F.TYPE| MTYPE | P_TYPE | L_TYPE
I NTERACTION. TYPE = (“T" | “t” | “F" | “f" | “M | “nt | “P" |
“pt] S| *s” | “L" | ‘I | “C | “c”) *11(I N _OK)
; Interactions fields Data types
| NDATE = DATE
I nTI ME = TIME
| NSTUDENT_I D = 1D
| NnCOURSE_I D = 1D
| NLESSON_I D = 1D
| NTYPE_| NTERACTI ON = | NTERACTI ON_TYPE | NUMERI C
I nl NTERACTI ON_I D = 1D
I nOBJECTI VE_I D = 1D
| nCORRECT_RESPONSE = <"> RESPONSE <" >
I NSTUDENT _RESPONSE = <”"> RESPONSE <’ >
| NRESULT = NUMERIC | “C | “c” | “U | “u” | “W | “w | “N
“
I NViEEI GHTI NG = NUMERI C
| NLATENCY = STI ME
August-16-2004 237 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

AUSYSTEM | D = ALPHA 1*DIA T

AuTYPE = *255(CSV_K)

AuCOMVAND _LI NE = *255(CSV_K)

AuFi | e_Nane <URL or file spec — need BNF for each>
AuMast ery_Score *DIGT

AuMAX_SCORE NUMERI C

AuMAX_TI ME_ALLOWED STI ME

AuTi me_Limt_Action
AuSyst em Vendor
AuCORE_VENDOR

*255(CSV_OK)
*255(CSV_OK | “'")

August-16-2004 238 CMI001 Version 4.0

11.0 Glossary

ASCII

AU

CBT

CMI

Course

ECMAScript

HACP
HTTP
HTTPS
HTTP/S
LMS
URL

URL -encoding

US-ASCII

August-16-2004

AICC - CMI Guidelines for Interoperability

American Standard Code for Information Interchange. The de facto standard for
the code numbers used by computers to represent all the upper and lower-case
Latin letters, numbers, punctuation, and certain device control codes. The
original version of ASCII (USASCII) hasonly 128 codes defined. “Extended”
(or internationalized) versions of ASCII contain the original 128 codes plus an
additional 128 for atotal of 256.

Assignable Unit. A module of computer based learning content (or CBT) that
can be launched and tracked by a CMI system . The smallest logical unit of
learning content in a course.

Computer-Based Training. Learning material wholly (or partially) in computer
mediaform. Commonly known as “learning content”. Assignable units (AU’S)
are considered atype of CBT.

Computer Managed Instruction. A system for launching and tracking learning
content. Commonly known as a L earning Management System (LMS)

A logical collection of AU’swith metadata describing organization, launch data,
and sequencing rules.

ECMAScript isthe 1SO standard version of JavaScript. 1n thisdocument the use
of the term "JavaScript" is actually areference to ECMA Script.

HTTP/S-Based AICC/CMI Protocol.

Hypertext Transfer Protocol.

Secure HTTP. HTTP protocol encrypted using secure sockets layer (SSL).
HTTPor HTTPS

L earning Management System.

Uniform resource locator.

A method of encoding text for HTTP messages. Seesection6.4.1.1 URL-
Encoding/Decoding

The original version of ASCII with only 128 defined codes. See ASCII.

239 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

12.0 References

|SO-8859 Information Processing -- 8-bit Single-Byte Coded Graphic Character Sets — Parts 1
thru 10.

ISO/IEC 11578 - Remote Procedure Call (RPC)
http://www.iso.org/iso/en/Catal ogueDetail Page. Catal ogueDetail ?CSNUM BER=2229

Leach and Salz, Draft RFC, “UUIDs and GUIDs’, Feb 04 1998
http://www.webdav.org/specs/draft-leach-uuids-guids-01.txt

T. BernersLee et d, RFC 1945, " Hypertext Transfer Protocol -- HTTP/1.0", May 1996.
http://ietf.org/rfc/rfc1945.txt?number=1945

T. Berners-Lee et al, RFC 1738, "Uniform Resource Locators (URL)", Dec 1994.
http://ietf.org/rfc/rfc1945.txt?number=1945

US-ASCIl Coded Character Set--7-Bit American Standard Code for Information Interchange,
ANSI X3.4-1986.

August-16-2004 240 CMI001 Version 4.0

AICC - CMI Guidelines for Interoperability

INDEX

CMIBOOIBAN ... 212
CMICOoMMENt4096INI.......ccceieiiriiiiceerieenne 212
CMIDate

CMIDECIMAI .. 213
CMIDirectoryNameFull.........ccccoovrvrnenrernesnennns 213
CMIFeedback
CMIFeedback:ChoiCe.......ooeiveeerieieeesesesne 214
CMIFeedback:Fill-in

CMIFeedback:Likert
CMIFeedback:Matching.........ooccveeerrecrrecrnineniens
CMIFeedback:NUMETrICccccveveeviceiiceeseieeine
CMIFeedback:Performance
CMIFeedback:Sequencingccccceeeeeeeeninnenans
CMIFeedback:True-Falsecooeveeceeeeveernne.
CMIFeedbackCSV
CMIFeedbackCSV:Choice.......cooevvecereeeerernne.
CMIFeedbackCSV:Fill-in
CMIFeedbackCSV:Likert
CMIFeedbackCSV:Matching.......cccccovvevverrenennne 216
CMIFeedbackCSV:NUMENICcceeeeeveereeeeereeene 217
CMIFeedbackCSV:Performance....
CMIFeedbackCSV:Sequencing........cccoveeneene 217
CMIFeedbackCSV:True-False.........cceeueune.e. 217
CMIFileNameFull
CMIFOrMatCSYV ...
CMIFOrmMatiNI.......coeveieeiece e
CMIGroupFreeFormINI
CMIGTIOUPINT vt
CMUHAENTIFIET .
CMlldentifierDevID
CMilldentifierGUID
CMlldentifierINI..............
CMIIntegerccoecvreneeas
CMILevVel ..
CMILOGQIC ..cooveerererrererrinene
CMIScorelNI ...,
CMISldentifier
CMISInteger.......cccceunu.e.

CMISHHRG2ES ... eessseess s

August-16-2004 241

CMISNG255CSV ...t eseeseseeees 222
CMISEING255INL....oeceicecreecteee e 222
CMIString4096 223
CMIStHNG4096CSV ...ttt 223
CMISLHNGA096INI ...t 223
CMIStudentName

CMITIME o
CMITIMESPAN ...ttt sesessessereseeens
CMlurl
CMIUFIENCNVPAITLIST ... 224
CMIVErsioNNUMDETcovieerereeeeerresee e 224
CMIVocabulary
CMIVocabulary:Credit........erecnerneenineneenns 225
CMIVocabulary:Credit-INI........cccoooeverniceninniens 225
CMIVocabulary:Entry
CMIVocabulary:EXit.......ccccoevernnnnenensnesenenns
CMIVocabulary:Interactionccccoeeevevevenenenenns 226
CMIVocabulary:Modecccevveveennensesesennenns 226
CMIVocabulary:Resultccocovvvvenreinereseenenns 226
CMIVocabulary:Statusccccvveenenensenenennenns 226
CMIVocabulary:Time Limit Action.........cccceeeveeen. 226
CMIVocabulary:Why Left
CMIVocabularyINI.......cenerereereereeenees
CMIVocabularyINI:Credit
CMIVocabularyINEENTIY ...
CMIVocabularyINEEXit.......oeeneerneeneneneens
CMIVocabularyINI:Interaction...........cccovceneneene 227
CMIVocabularyINEModecoccvececneincinieenan 228
CMIVocabularyINI:ResuUlt.........ccccoeveecneccirinen 228
CMIVocabularyINL:Statusccovveenveveeseseienenns 228
CMIVocabularyINI:Time Limit Action.................. 228
CMIVocabularyINEWhy Left......eicercecinne 229
Core.Output File.....ccceeeeereerennne. 12, 16, 18, 156, 158, 159
Core.Student Id ...12, 159, 162, 163, 164, 177, 181, 182,
183, 184
Core.Student Namecccccvvveveerrnennns
HacpCommand..........c.cc......
HacpErrorNumber................
HacpErrorText.......coveeee
HacpRequestMessage.......
HacpResponseMessage
StAtUp File... e 50, 155, 157, 158, 159, 160

CMI001 Version 4.0

